Primordial Black Holes and Stochastic Inflation beyond slow roll Cosmology from Home @2028

Swagat Saurav Mishra

Postdoctoral Research Fellow

Centre for Astronomy and Particle Theory (CAPT) School of Physics and Astronomy, University of Nottingham.

With Edmund J. Copeland and Anne M. Green

July 2023

Primordial Black Holes (PBHs)

Candidates for Dark Matter, Hawking Radiation, Baryogenesis, Reheating, seeds of SMBHs etc. Extremely interesting rich phenomenology!

Inflation, Quantum fluctuations and PBHs

$$\text{CMB} \longrightarrow \text{LSS}$$

- Adiabatic $\zeta(\vec{x})$
- Almost scale-invariant

$$\mathcal{P}_{\zeta} = A_S \left(\frac{k}{k_*}\right)^{n_S}$$

$$A_S\simeq 2\times 10^{-9}\,,\ n_{_S}\simeq -0.035$$

• Nearly Gaussian

$$P[\zeta] = \mathcal{B} \exp \left[\frac{-\zeta^2}{2\sigma^2} \left(1 + f_{\rm NL} \zeta + \ldots \right) \right]$$

- \rightarrow LSS, CMB \Rightarrow Large-scale tiny quantum fluctuations
- \rightarrow PBHs, $GW^{(2)}s \Rightarrow$ Small-scale larger fluctuations ?

What we know from Observations

CMB probes scales $k \in [0.0005, 0.5] \text{ Mpc}^{-1} \Rightarrow \Delta N \simeq 7$

Small-scale power spectrum is not constrained!

Possibility of enhancement of small-scale fluctuations!

**Green and Kavanagh, J. Phys. G 48 (2021) 4, 043001

Single-field Inflation beyond the CMB Window

⇒ Scope for non-trivial small-scale dynamics

CMB scales: $P_{\zeta} \sim k^{-0.035}$ (Slightly red – tilted); $\eta_H \simeq -0.018$

Small-scale growth: $P_{\zeta} \sim k^{n_S} \stackrel{(\leq 4)}{=} (Blue - tilted); \quad \eta_H \geq 3/2$

**Byrnes et. al JCAP 06(2019) 028

Large Quantum Fluctuations

Breakdown of scale-invariance at small-scales

$$\epsilon_H = -\frac{\mathrm{dln}H}{\mathrm{d}N}, \quad \eta_H = \epsilon_H - \frac{1}{2}\frac{\mathrm{dln}\epsilon_H}{\mathrm{d}N}$$
; N = ln(a)

② Breakdown of Gaussian nature of primordial fluctuations

For
$$\zeta \gg 1$$

$$P[\zeta] \neq \mathcal{B} \exp \left[\frac{-\zeta^2}{2 \int_{k_1}^{k_2} \operatorname{dln} k \, \mathcal{P}_{\zeta}(k)} \left(1 + f_{\text{NL}} \, \zeta + g_{\text{NL}} \, \zeta^2 + \ldots \right) \right]$$

^{**}Celoria et. al JCAP 06 (2021) 051

Breakdown of Scale-invariance via feature

A feature: an inflection point or a local bump/dip at low scales slows down the inflaton

⇒ Breaking of scale invariance!!

At small scales $\epsilon_H \ll 1$, $\eta_H \gtrsim 3$

Violation of slow-roll

Criteria for PBH from single field Inflation—

- Large scales satisfying with CMB constraints.
- ② Intermediate scale feature to enhance power for PBH formation.
- 3 Successful Reheating mechanism.

^{**}Motohashi, Hu PRD 96(2017) 6, Cole et. al arXiv:2304.01997

Computing Power spectrum

$$\mathcal{P}_{\zeta}(k) = \frac{k^3}{2\pi^2} |\zeta_k|^2 \bigg|_{k < aH}$$

Mukhanov-Sasaki variable $v_k = z \times \zeta_k$; $z = am_p \sqrt{2\epsilon_H}$ In spatially-flat gauge

$$\frac{\mathrm{d}^2 v_k}{\mathrm{d}N^2} + (1 - \epsilon_H) \frac{\mathrm{d}v_k}{\mathrm{d}N} + \left[\left(\frac{k}{aH} \right)^2 + M_{\text{eff}}^2(N) \right] v_k = 0$$

where the **effective mass term** is

$$M_{\text{eff}}^{2}(N) = -\frac{1}{(aH)^{2}} \left[2 + 2\epsilon_{H} - 3\eta_{H} + 2\epsilon_{H}^{2} + \eta_{H}^{2} - 3\epsilon_{H}\eta_{H} - \frac{d\eta_{H}}{dN} \right]$$

Background dynamics dependent and complicated

Typical Inflationary Dynamics

$$SR-I \text{ (CMB scale)} \longrightarrow USR \longrightarrow CR \longrightarrow SR-II$$

$$\overline{\eta_H}: \hspace{1cm} \eta_1 \hspace{1cm} \longrightarrow \hspace{1cm} \eta_2 \hspace{1cm} \longrightarrow \hspace{1cm} \eta_3 \hspace{1cm} \longrightarrow \hspace{1cm} \eta_4$$
 Wands Duality

Background

$(aH)^{-2} z''/z$ SR-II SR-I CR -2-440 5 10 Number of e-folds N_e

Reason for duality

For
$$\epsilon_H \ll 1$$
,

$$\frac{M_{\rm eff}^2}{(aH)^2} \simeq 2 - 3\eta_H + \eta_H^2 - \frac{\mathrm{d}\eta_H}{\mathrm{d}N}$$

Assuming

$$\eta_H = \frac{3}{2} + C \tanh \left[C \left(N_e - \tilde{N}_e \right) \right]$$

$$\nu^2 \equiv \frac{M_{\text{eff}}^2}{(aH)^2} + \frac{1}{4} \simeq \text{const.}$$

**Karam et. al JCAP 03(2023) 013

Typical Power-spectrum

Statistics of Primordial Fluctuations

Is the PDF of Primordial Fluctuations $P[\zeta]$ Gaussian or Non-Gaussian?

Non-Gaussian for $\zeta \gg 1$ in general

PBHs from Rare Peaks: Sensitive to the tail of PDF

Non-Perturbative Methods for full PDF

Approach - I

Classical Non-linear δN formalism

Approach - II

Semi-classical Approximation

Approach - III

Stochastic Inflation

Stochastic Inflation: Effective IR description

Coarse-grained description

$$\phi = \Phi + \varphi \quad , \quad \pi_{\phi} = \Pi + \pi$$

Langevin Equations (Non-linear)

$$\frac{\mathrm{d}\Phi}{\mathrm{d}N} = D_{\Phi} + \xi_{\phi}; \quad \frac{\mathrm{d}\Pi}{\mathrm{d}N} = D_{\Pi} + \xi_{\pi}$$

$$rac{\mathrm{d}F_{\mathrm{cg}}}{\mathrm{d}N} = \mathbf{Drift}_{\mathrm{cl}} + \mathbf{Diffusion}_{\mathrm{Q}}$$

Gaussian White noise statistics

$$\langle \xi_i(N) \, \xi_j(N') \rangle = \Sigma_{ij}(N) \, \delta_D(N - N')$$

Noise Matrix elements

$$\Sigma_{ij}(N) = (1 - \epsilon_H) \frac{k^3}{2\pi^2} \phi_{i_k}(N) \phi_{j_k}^*(N) \Big|_{k = \sigma aH}$$

Coarse-graining scale

$$k = \sigma a H$$
, $\sigma \ll 1$

**A. A. Starobinsky (1986)

PDF from first-passage time analysis

$$\frac{\mathrm{d}\Phi}{\mathrm{d}N} = D_{\Phi} + \xi_{\phi}; \qquad \frac{\mathrm{d}\Pi}{\mathrm{d}N} = D_{\Pi} + \xi_{\pi}$$

First-passage no. of e-folds \mathcal{N} and PDF $P(\mathcal{N})$

Subject to boundary conditions

- **Q** Reflecting boundary at $\Phi = \phi_{\rm en}$: $\frac{\partial}{\partial \Phi} P(\mathcal{N}) \bigg|_{\Phi = \phi_{\rm en}} = 0$
- ② Absorbing boundary at $\Phi = \phi_{\text{ex}}$: $P(\mathcal{N}) \bigg|_{\Phi = \phi_{\text{ex}}} = \delta_D(\mathcal{N})$

- Numerical Simulations
- Fokker-Planck Equation (suited for analytical treatment)

Langevin \longrightarrow Fokker-Planck Equation

PDF of first-passage number of e-foldings \mathcal{N} : Adjoint FPE

$$\frac{\partial P(\mathcal{N})}{\partial \mathcal{N}} = \left[D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} + \frac{1}{2} \Sigma_{\phi\phi} \frac{\partial^{2}}{\partial \Phi^{2}} + \Sigma_{\phi\pi} \frac{\partial^{2}}{\partial \Phi \partial \Pi} + \frac{1}{2} \Sigma_{\pi\pi} \frac{\partial^{2}}{\partial \Pi^{2}} \right] P(\mathcal{N})$$

$$P(\mathcal{N}) \equiv P_{\Phi \Pi}(\mathcal{N})$$

Stochastic $\delta \mathcal{N}$ Formalism

Statistics of $\mathcal{N} \to \mathbf{Statistics}$ of ζ_{cg} : $P[\mathcal{N}] \longrightarrow P[\zeta_{cg}]$

$$\boxed{\zeta_{\rm cg} \equiv \zeta(\Phi) = \mathcal{N} - \langle \mathcal{N}(\Phi) \rangle}; \quad \langle \mathcal{N}(\Phi) \rangle = \int_0^\infty \mathcal{N} P(\mathcal{N}) \, d\mathcal{N}$$

Abundance of PBHs
$$\left[eta \sim \int_{\zeta_c}^{\infty} P(\zeta_{
m cg}) \, {
m d} \zeta_{
m cg}
ight]$$

^{**}Pattison et. al JCAP 04 (2021) 080

Quasi de Sitter approximation

Mode functions $\{\phi_k, \pi_k\} \longrightarrow dS$

$$\Sigma_{\phi\phi} \simeq \left(\frac{H}{2\pi}\right)^2 , \quad \Sigma_{\phi\pi}, \ \Sigma_{\pi\pi} \ll \Sigma_{\phi\phi}$$

The Langevin equations become

$$\frac{\mathrm{d}\Phi}{\mathrm{d}N} = D_{\Phi} + \frac{H}{2\pi}\,\xi\,; \qquad \frac{\mathrm{d}\Pi}{\mathrm{d}N} = D_{\Pi}$$

with single Gaussian white noise ξ satisfying

$$\langle \xi(N) \rangle = 0$$
, and $\langle \xi(N)\xi(N') \rangle = \delta_D (N - N')$

Adj. Fokker-Planck Equation becomes

$$\frac{\partial P(\mathcal{N})}{\partial \mathcal{N}} = \left[\frac{H^2}{8\pi^2} \frac{\partial^2}{\partial \Phi^2} + D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} \right] P(\mathcal{N})$$

PDF for flat Quantum Well: Pure diffusion

$$V(\Phi) = V_0 \,, \quad H^2 \simeq \frac{V_0}{3m_p^2}$$

Leading to

PDF
$$P(\mathcal{N}) = \sum_{n=0}^{\infty} A_n(\Phi) e^{-\Lambda_n \mathcal{N}}$$

with
$$\Lambda_n = (2n+1)^2 \frac{\pi^2}{4} \frac{1}{u^2}$$

$$A_n = (2n+1) \frac{\pi}{\mu^2} \sin \left[(2n+1) \frac{\pi}{2} \left(\frac{\Phi}{\Delta \Phi} \right) \right]$$

Control Parameter :
$$\mu = 2\sqrt{2}\pi \frac{\Delta\phi_{\text{well}}}{H}$$

Exponential Tail **Highly Non-Gaussian!!**

^{**}Pattison et. al JCAP 10(2017) 046; Ezquiaga et. al. JCAP 03(2020) 029

Additional Complications

• General form of the feature

$$V(\Phi) = V_0 + \frac{1}{2} m^2 \Phi^2 \pm \frac{\mu}{2} \Phi^3 + \frac{\lambda}{4} \Phi^4 \pm \dots$$

• When inflaton **drift** is included

$$\frac{\partial}{\partial \mathcal{N}} P(\mathcal{N}) = \left[\frac{\Sigma_{\phi\phi}}{2} \frac{\partial^2}{\partial \Phi^2} + \left(D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} \right) \right] P(\mathcal{N})$$

• Beyond the de Sitter mode functions for noise

$$\boxed{\frac{\partial P}{\partial \mathcal{N}} = \left[D_{\Phi} \frac{\partial}{\partial \Phi} + D_{\Pi} \frac{\partial}{\partial \Pi} + \frac{\Sigma_{\phi\phi}}{2} \frac{\partial^2}{\partial \Phi^2} + \Sigma_{\phi\pi} \frac{\partial^2}{\partial \Phi \partial \Pi} + \frac{\Sigma_{\pi\pi}}{2} \frac{\partial^2}{\partial \Pi^2} \right] P(\mathcal{N})}$$

Recently concluded work

SSM, Edmund J. Copeland and Anne M. Green,

"Primordial black holes and stochastic inflation beyond slow roll: I - Noise Matrix Elements"

[arXiv:2303:17375]

Computing Noise Matrix Elements

$$\Sigma_{ij}(N) = (1 - \epsilon_H) \frac{k^3}{2\pi^2} \phi_{i_k}^*(N) \phi_{j_k}(N) \Big|_{k = \sigma aH}; \qquad \phi_{i_k} \equiv \{\phi_k, \pi_k\}$$

$$\phi_k(N) = \frac{v_k(N)}{a}, \quad \pi_k(N) = \frac{\mathrm{d}\phi_k}{\mathrm{d}N}$$

Mukhanov-Sasaki variable v_k in spatially-flat gauge

$$\left[\frac{\mathrm{d}^2 v_k}{\mathrm{d}N^2} + (1 - \epsilon_H) \frac{\mathrm{d}v_k}{\mathrm{d}N} + \left[\left(\frac{k}{aH} \right)^2 + M_{\text{eff}}^2 \right] v_k = 0 \right]$$

where the **effective mass term** is

$$-M_{\text{eff}}^2(aH)^{-2} = 2 + 2\epsilon_H - 3\eta_H + 2\epsilon_H^2 + \eta_H^2 - 3\epsilon_H\eta_H - \frac{d\eta_H}{dN}$$

Background dynamics dependent and complicated

Numerical Noise Matrix Elements

Potential with a tiny Gaussian bump/dip feature

$$\boxed{V(\phi) = V_0 \frac{\phi^2}{\phi^2 + M^2} \left[1 \pm A \, \exp\left(-\frac{1}{2} \left(\frac{\phi - \phi_0}{\Delta \phi}\right)^2\right)\right]}$$

 Σ_{ij} evolves and swaps hierarchy!

**Mishra et. al JCAP 04(2020) 007

Analytical appprox: Sharp transitions

Assume $|\epsilon_H| \ll |\eta_H|$ and $\epsilon_H \ll 1$ (qdS approx.)

$$\Rightarrow \boxed{\frac{z''}{z}(aH)^{-2} \simeq 2 - 3\eta_H + \eta_H^2 - \frac{1}{aH}\eta_H'}$$

And $\eta_H \to \text{combination of Step functions}$

$$\eta_H(\tau) = \eta_1 + (\eta_2 - \eta_1) \Theta(\tau - \tau_1) + \dots$$

For which

$$\frac{z''}{z}(aH)^{-2} \simeq \mathcal{A}\,\tau\,\delta_D(\tau - \tau_1) + \left(\nu_1^2 - \frac{1}{4}\right) + \left(\nu_2^2 - \nu_1^2\right)\,\Theta(\tau - \tau_1) + \dots$$

Where the **strength of transition** is $A = \eta_2 - \eta_1$ and

order of Hankel
$$\left[
u_{1,2}^2 = \left(\frac{3}{2} - \eta_{1,2}\right)^2\right]$$

Results from Analytical Techniques

$$\eta_H(\tau) = \eta_1 + (\eta_2 - \eta_1) \Theta(\tau - \tau_1)$$
, Conformal time $\tau = \frac{-1}{aH}$

$$\eta_1 \simeq -0.02; \quad \eta_2 \simeq 3.3$$

Reproduces numerical results

Results from Analytical Techniques

$$\boxed{\eta_H(\tau) = \eta_1 + (\eta_2 - \eta_1) \ \Theta(\tau - \tau_1)}, \quad \text{Conformal time } \tau = \frac{-1}{aH}$$

$$\eta_1 \simeq -0.02$$
; $\eta_2 \simeq 3.3$

$$\eta_2 \simeq 3.3$$

Reproduces numerical results

dS approximation

Primary Conclusions

1 During **SR-I** phase, $\Sigma_{\phi\phi}^{\rm SR} \simeq \left(\frac{H}{2\pi}\right)^2$

$$\boxed{\Sigma_{\phi\phi}: |\Sigma_{\phi\pi}|: \Sigma_{\pi\pi} \simeq 1: \left|\nu_1 - \frac{3}{2}\right|: \left(\nu_1 - \frac{3}{2}\right)^2}$$

② Immediately after the transition, $\Sigma_{ij} \propto e^{-2AN}$, and

$$\Sigma_{\phi\phi}: |\Sigma_{\phi\pi}|: \Sigma_{\pi\pi} \simeq 1: \mathcal{A}: \mathcal{A}^2$$

3 During **CR** phase, $\Sigma_{\phi\phi}^{\text{CR}} \simeq 2^{2(\nu_2 - \nu_1)} \left[\frac{\Gamma(\nu_2)}{\Gamma(\nu_1)} \right]^2 \sigma^{2(\nu_1 - \nu_2)} \Sigma_{\phi\phi}^{\text{SR}}$

$$\left| \Sigma_{\phi\phi} : \left| \Sigma_{\phi\pi} \right| : \Sigma_{\pi\pi} \simeq 1 : \left| \nu_2 - \frac{3}{2} \right| : \left(\nu_2 - \frac{3}{2} \right)^2 \right|$$

⇒ Strongest diffusion during Constant-Roll epoch!

Primary Conclusions

• During SR-I phase, $\Sigma_{\phi\phi}^{SR} \simeq \left(\frac{H}{2\pi}\right)^2$

$$\boxed{\Sigma_{\phi\phi}: |\Sigma_{\phi\pi}|: \Sigma_{\pi\pi} \simeq 1: \left|\nu_1 - \frac{3}{2}\right|: \left(\nu_1 - \frac{3}{2}\right)^2}$$

② Immediately after the transition, $\Sigma_{ii} \propto e^{-2AN}$, and

$$\Sigma_{\phi\phi}: |\Sigma_{\phi\pi}|: \Sigma_{\pi\pi} \simeq 1: \mathcal{A}: \mathcal{A}^2$$

3 During **CR** phase, $\Sigma_{\phi\phi}^{\text{CR}} \simeq 2^{2(\nu_2 - \nu_1)} \left[\frac{\Gamma(\nu_2)}{\Gamma(\nu_1)} \right]^2 \sigma^{2(\nu_1 - \nu_2)} \Sigma_{\phi\phi}^{\text{SR}}$

$$\left| \Sigma_{\phi\phi} : \left| \Sigma_{\phi\pi} \right| : \Sigma_{\pi\pi} \simeq 1 : \left| \nu_2 - \frac{3}{2} \right| : \left(\nu_2 - \frac{3}{2} \right)^2 \right|$$

⇒ Strongest diffusion during Constant-Roll epoch!

What is the nature of PDF $P[\zeta]$? Work in Progress

Caveats

- Mode functions evolved in a fixed (deterministic background). **Figueroa et. al 2021
- 2 Computed in spatially-flat gauge. **Pattison et. al 2019
- Only a single transition was considered analytically (duality).
- **1** Both Φ and Π were treated stochastically. **Tomberg 2022
- **6** β_{PBH} in terms of ζ rather than δ . **Tada, Vennin 2020

Questions (even basic ones) & Comments are most welcome.

Cosmology from Home is my favourite Conference!!

EXTRA SLIDES

Set-up for Analytical Computation

- $\eta_H \to \text{is piece-wise constant} \Rightarrow \eta_i \simeq \text{const.}$
- ν_i is piecewise (positive) constant.
- Introduce new time variable $T = -k\tau = \frac{k}{aH}$

$$\mathbf{MS} \ \mathbf{Eqn} \ \Rightarrow \left[\frac{\mathrm{d}^2 v_k}{\mathrm{d}T^2} + \left[1 - \frac{\nu^2 - 1/4}{T^2} \right] v_k = 0 \right]$$

General solution is given by

4S mode functions

$$v_k(T) = \frac{1}{\sqrt{2k}} \left[\alpha_k \left(1 + \frac{i}{T} \right) e^{iT} + \beta_k \left(1 - \frac{i}{T} \right) e^{-iT} \right]$$

Beyond dS approximation

$$v_k(T) = \sqrt{T} \left[C_1 H_{\nu}^{(1)}(T) + C_2 H_{\nu}^{(2)}(T), \right]$$

Determining Co-efficients

• Apply Bunch-Davies initial conditions for modes exiting before the transition $T>T_1$

$$v_k(T)\Big|_{T\to\infty} \to \frac{1}{\sqrt{2k}} e^{iT}$$

• Apply Israel Junction matching conditions at transition

$$v_k^A(\tau_1) = v_k^B(\tau_1)$$
 (Continuity)

$$\left. \frac{\mathrm{d}}{\mathrm{d}\tau} v_k^A \right|_{\tau_1^+} - \left. \frac{\mathrm{d}}{\mathrm{d}\tau} v_k^B \right|_{\tau_1^-} = \int_{\tau_1^-}^{\tau_1^+} \mathrm{d}\tau \frac{z''}{z} v_k^A(\tau) \quad \text{(Differentiability)}$$

Application of the technique

- A single instantaneous transition from $SR \to USR$ using dS mode functions.
- A single instantaneous transition from $SR \to USR$ using Hankel functions.

Application of the technique

- A single instantaneous transition from $SR \to USR$ using dS mode functions.
- A single instantaneous transition from $SR \to USR$ using Hankel functions.

Why a single transition?

Wands duality between USR and CR

In the absence of transition

For $\nu = \text{constant}$

$$\Sigma_{\phi\phi} = 2^{2(\nu - \frac{3}{2})} \left[\frac{\Gamma(\nu)}{\Gamma(3/2)} \right]^2 \left(\frac{H}{2\pi} \right)^2 T^{2(\frac{3}{2} - \nu)} \left[1 + \frac{1}{2(-1 + \nu)} T^2 + \dots \right]$$

$$\Sigma_{\phi\pi} = 2^{2\left(\nu - \frac{3}{2}\right)} \left[\frac{\Gamma(\nu)}{\Gamma(3/2)} \right]^2 \left(\frac{H}{2\pi} \right)^2 \left(\frac{3}{2} - \nu \right) T^{2\left(\frac{3}{2} - \nu\right)} \left[1 + \frac{2(5 - 2\nu)}{4(\nu - 1)(3 - 2\nu)} T^2 + \dots \right]$$

$$\Sigma_{\pi\pi} = 2^{2\left(\nu - \frac{3}{2}\right)} \left[\frac{\Gamma(\nu)}{\Gamma(3/2)}\right]^2 \left(\frac{H}{2\pi}\right)^2 \left(\frac{3}{2} - \nu\right)^2 T^{2\left(\frac{3}{2} - \nu\right)} \left[1 + \frac{2(7 - 2\nu)}{4(\nu - 1)(3 - 2\nu)} T^2 + \dots\right]$$

Correlation

$$\gamma = \frac{|\text{Re}(\Sigma_{\phi\pi})|}{\sqrt{\Sigma_{\phi\phi}\Sigma_{\pi\pi}}}$$

With
$$\gamma^2 = 1 - \det(\Sigma_{ij})/(\Sigma_{\phi\phi}\Sigma_{\pi\pi})$$

Multiple Transitions

Noise-Matrix: Three Transitions

Noise-Matrix: No Duality

Power-spectrum: No Duality

From $\mathcal{N} \longrightarrow \zeta_{cg}$ (Stochastic $\delta \mathcal{N}$ Formalism)

By Stochastic
$$\delta \mathcal{N}$$
 formalism, $\zeta_{cg} \equiv \zeta(\Phi) = \mathcal{N} - \langle \mathcal{N}(\Phi) \rangle$

$$\zeta_{\text{cg}} \equiv \zeta(\Phi) = \mathcal{N} - \langle \mathcal{N}(\Phi) \rangle$$

Average no. of e – folds
$$\langle \mathcal{N}(\Phi) \rangle = \int_0^\infty \mathcal{N} P_{\Phi}(\mathcal{N}) \, d\mathcal{N}$$

$$\Rightarrow \boxed{\langle \mathcal{N}(\Phi) \rangle = \sum_n \frac{\mathcal{A}_n(\Phi)}{\Lambda_n^2}}$$

Threshold
$$\left| \mathcal{N}_c = \zeta_c + \left\langle \mathcal{N}(\Phi) \right\rangle = \zeta_c + \sum_n \frac{\mathcal{A}_n(\Phi)}{\Lambda_n^2} \right|$$

Relevance for PBH Mass Function

$$\beta(\Phi) \equiv \int_{\zeta_c}^{\infty} P(\zeta_{cg}) \, d\zeta_{cg} = \int_{\mathcal{N}_c}^{\infty} P_{\Phi}(\mathcal{N}) \, d\mathcal{N}$$
With
$$P_{\Phi}(\mathcal{N}) = \sum_{n} A_n e^{-\Lambda_n \mathcal{N}}, \quad \mathcal{N}_c = \zeta_c + \langle \mathcal{N}(\Phi) \rangle$$
And
$$\Rightarrow \left[\langle \mathcal{N}(\Phi) \rangle = \sum_{m} \frac{\mathcal{A}_m(\Phi)}{\Lambda_m^2} \right]$$
We get
$$\beta(\Phi) = \sum_{n} \frac{\mathcal{A}_n(\Phi)}{\Lambda_n} e^{-\Lambda_n \left[\zeta_c + \langle \mathcal{N}(\Phi) \rangle \right]}$$

PBH Mass Function: Gaussian vs Non-Gaussian

Stochastic NG
$$\beta^{\text{NG}}(\Phi) = \sum_{n} \frac{\mathcal{A}_{n}(\Phi)}{\Lambda_{n}} e^{-\Lambda_{n} \left[\zeta_{c} + \langle \mathcal{N}(\Phi) \rangle \right]}$$

Classical Gaussian
$$\beta^{\rm G}(\Phi) = \frac{\sigma_{\rm cg}}{\sqrt{2\pi}\zeta_c}e^{-\frac{\zeta_c^2}{2\sigma_{\rm cg}^2}}$$

With

$$\sigma_{\rm cg}^2(\Phi) = \int_{k(\Phi)}^{k_e} \frac{\mathrm{d}k}{k} \, \mathcal{P}_{\zeta}(k)$$

Gaussian approx. MIGHT under-estimate PBH abundance by several orders of magnitude