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Primordial Black Holes (PBHs)

Candidates for Dark Matter, Hawking Radiation,
Baryogenesis, Reheating, seeds of SMBHs etc.

Extremely interesting rich phenomenology!
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Inflation, Quantum fluctuations and PBHs

CMB — LSS

o Adiabatic ((Z)

@ Almost scale-invariant

E\"s
Pe=as (i)

Ag ~2x1077, n, ~ —0.035

@ Nearly Gaussian
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QCQ 1+ fNLd+ - )}

P[¢] = Bexp [

— LSS, CMB = Large-scale tiny quantum fluctuations

— PBHs, GW®)s = Small-scale larger fluctuations ?
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What we know from Observations

CMB probes scales k € [0.0005, 0.5] Mpc™! = AN ~ 7

Small-scale power spectrum is not constrained!

Ruled out (over-production of PBHs)
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Possibility of enhancement of small-scale fluctuations!

**Green and Kavanagh, J. Phys. G 48 (2021) 4, 043001
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Single-field Inflation beyond the CMB Window

= Scope for non-trivial small-scale dynamics

Inflaton pOtentlaI Large-scale fluctuations: tiny, scale-invariant, gaussian /
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CMB scales : P ~ k"% (Slightly red — tilted); ng ~ —0.018

Small-scale growth : P ~ ks (S (Blue — tilted); ny > 3/2

**Byrnes et. al JCAP 06(2019) 028




Large Quantum Fluctuations

© Breakdown of scale-invariance at small-scales

dinH 1 dlneg

- _Z - N=1
€H AN NH = €H 2 AN ; n(a)

@ Breakdown of Gaussian nature of primordial

fluctuations
For ( > 1
P[(] # Bexp ¢ (l—i-fNLC—i-gNLCQ—l—...)
2f dlnk PC

**Celoria et. al JCAP 06 (2021) 051
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Breakdown of Scale-invariance via feature

A feature: an inflection point or a local bump/dip at low
scales slows down the inflaton

= Breaking of scale invariance!!

At small scales |eg < 1, ng 23| Violation of slow-roll

Criteria for PBH from single field

Inflation— Inflaton potential with PBH feature
k. = 0.05 (Mpc)~*
Q Large scales satisfying with CMB e i’i’"" *
constraints. PBH dip

V(4)

@ Intermediate scale feature to
enhance power for PBH
formation.

Reheating

@ Successful Reheating mechanism. Ben domn

ks
&

**Motohashi, Hu PRD 96(2017) 6, Cole et. al arXiv:2304.01997
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Computing Power spectrum

Pe(k) = 9.2 |kl

k<<aH

Mukhanov-Sasaki variable ; z = amp\/2€g

In spatially-flat gauge

where the effective mass term is

1 dng
MZ(N) = _W [2 + 2ey — 30y + 264 + 0% — ey — d_N]

Background dynamics dependent and complicated
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Typical Inflationary Dynamics

SR-I (CMB scale) — USR — CR — SR-II

‘ nH . /rh —_ 7]2 — 773 — 774 ‘ Wands Duality
Background Reason for duality
6 \ For ey <« 1,
USR] M2, dnu
S ~2-3 P
, (a1¥)2 nH'+'an dN

Ve
——

N
N [sR-N] Assuming
R
3 ,—-"""“""
3 ‘< CR ~
= mr = 2+ C tanh [ (N, — N,)]
[ === NH
2
- — @’% o MZG 1
! v = ¢ + — ~ const
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Number of e-folds N,

**SSM, Sahni JCAP 04(2020) 007, **Karam et. al JCAP 03(2023) 013
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Statistics of Primordial Fluctuations

Is the PDF of Primordial Fluctuations P[(] Gaussian or
Non-Gaussian?

Non-Gaussian for ¢ > 1 in general

P a— fcoo P(Cog)dCeg Tail of Primordial PDF e Goussian
—— Non-Gaussian

~ -2
@ [
.g _ ~ efﬁi'
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= Ak ‘
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b Typical fluctuations | | ¢ =~ CcMB [N
% = Non-Gaussian tail
H
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1
2 = | |
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5 o | |
Profile of ¢ in physical space & 3
¢
(z,y, 2) Ceg

PBHs from Rare Peaks: Sensitive to the tail of PDF
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Non-Perturbative Methods for full PDF

Approach -1

|Classical Non-linear 6N formalism |

Approach - 11

Semi-classical Approximation

Approach - 111

|Stochastic Inflation |
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Stochastic Inflation: Effective IR description

Coarse-grained description p=@+¢ , mpg=I+m7

Langevin Equations (Non-linear)

do dIl
— =D . == = D +é&
v~ Petles gy =DPuts
dF., . e
v = Drift_ + Dlﬁ'usan

Gaussian White noise statistics

(&(N) &(N')) = Zi5(N) dp(N — N')

Noise Matrix elements Coarse-graining scale

3 k=ocaH, o<1

k=caH | **A. A. Starobinsky (1986)
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PDF from first-passage time analysis

do dIl
— =D ;  S—=0D
ay ~Petbes gy =Dt

First-passage no. of e-folds N/

and PDF P(N) Ultra Slow Roll Inflation B
s
Subject to boundary conditions %

@ Reflecting boundary at ® = ¢y, :

/ lUSR/Quantum Well ‘

End of Inflation

i =
55 P(N) - 0 = J
—Y¥en
@ Absorbing boundary at ® = ¢y : )
P — () @ Numerical Simulations
P=cex o Fokker-Planck Equation (suited

for analytical treatment)
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Langevin — Fokker-Planck Equation

PDF of first-passage number of e-foldings N: Adjoint FPE

OP(N) 0 0 02 9?1 02
N 75+ D+ 550 g + Ser g + 5 P

- {Dq, } PN
P(N) = Pani(N)

Stochastic 0N Formalism
Statistics of N’ — Statistics of (;, : P[N] — P[(]

(e =C(@) =N — N(@))]; (N(@)) = / T NP AN

Abundance of PBHs |3 ~ / P((eg) dleg

**Pattison et. al JCAP 04 (2021) 080
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Quasi de Sitter approximation

Mode functions {¢y, 7} — dS

H 2
g (g) o D, Y K B

The Langevin equations become

dd H di

ay et S gy = hn

with single Gaussian white noise £ satisfying
(€(N)) =0, and (§(N)E(N)) =dp (N —N')
Adj. Fokker-Planck Equation becomes

OPWN) _ [H? & ) )

N s o0z T Pogg T Pugg [ PN)
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PDF for flat Quantum Well: Pure diffusion

Leading to

~ (D) = g for € [Pex; Pen]

PDF |P(N) =) Ay (®)e N
n=0

2
Ef‘ _______ S= 0.4
] :: 10! EXPonen:ia, Tail

. w1 [=] @, L Aba
with An = (277, —+ 1)2 ZF o f =g b=mt0s

PDF of Flat Quantum Well

T - ) 000 o o0 oin om , T om o we
A Exponential Tail
Control Parameter : |y = 2v/2n f;/eu Highly Non-Gaussian!!

**Pattison et. al JCAP 10(2017) 046; Ezquiaga et. al. JCAP 03(2020) 029
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Additional Complications

o General form of the feature

1 By
V(<I>):V0+§m2<1>2ig<1>3+1<1>4i...

o When inflaton drift is included

)  [Sp 07 P P)

o Beyond the de Sitter mode functions for noise

Dol + Dyl 420 O g O e
o0 TPen T Ty 32 T 7" hpem T 2 oI

2 2 2
8P:[ P 0 Ny 0 P 2”8}13(1\/)
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Recently concluded work

SSM, Edmund J. Copeland and Anne M. Green,

“Primordial black holes and stochastic inflation beyond slow
roll: I - Noise Matrixz Elements”

[arXiv:2303:17375]
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Computing Noise Matrix Elements

k‘3

Yij(N) = (1_€H)ﬁ i (V). (N) ; bi, = { ok, T}
k=caH
o) = 2 vy = S

Mukhanov-Sasaki variable v in spatially-flat gauge

d2vy, duy, k2
dN2+(1_ )dN+ (a_H) +Mezﬂ ok =0
where the effective mass term is
dnH

~MZ(aH)™? =2+ 2e — 30y + 2¢ + 0 — Semnm —

AN

Background dynamics dependent and complicated
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Numerical Noise Matrix Elements

Potential with a tiny Gaussian bump/dip feature

i 1 /¢—d0)2
V(¢):VOW |:1:I:Aexp<7§< o )>:|
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¥;; evolves and swaps hierarchy!  **Mishra et. al JCAP 04(2020) 007
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Analytical appprox: Sharp transitions

Assume |eg| < |ng| and ey < 1 (qdS approx.)

"
=

_ 1
(aH) 2’32—377H+7712L1—E"7}{

z

And ng — combination of Step functions

nu(T) =m+ (2 —m) @(T—’Tl)+...‘

For which

2 4
Where the strength of transition is and

order of Hankel |v

"
Z_(aH)_2 ~ Atdop(t —71) + (7/% - 1) + (V3 —17) O(1 —71) + ...

, CAPT, Nottingham PBHs and Stochastic Inflation



Results from Analytical Techniques

-1
Conf 1 ti = —
, onformal time 7= —

‘nH(T) =m+(n2—m) O(r — 1)

m ~ —0.02; o ~ 3.3

4

% —=
/

2
21 2 2 30 32 31

Reproduces numerical results
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Results from Analytical Techniques

. -1
‘UH(T) =m+(m—m) O(tr—71)|, Conformal time 7= 0
a
m ~ —0.02; N2 ~ 3.3
1010 — Zw v — =
A/ Re(Zy) 1, o Re(Z,)
b\ /] —_— S —
ﬁ'Eam v x / “'Emm—‘ \
E 101 E 1070
i \\ /// g
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g 1070 / 2 ://,
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Reproduces numerical results dS approximation
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Primary Conclusions

@ During SR-I phase, 221;” = (%)2

L3 (3
12- 12

2AN

E¢¢ . |Z¢ﬂ-| : 27” ~1:

@ Immediately after the transition, X;; oc e™ , and

Z¢¢:‘E¢ﬂ-‘izﬂ-ﬂ-211¢42¢42

@ During CR phase, Zgg ~ 92(r2—11) [F(VQ)] ’ 02("1_”)22}2

E(M) : |E¢ﬂ-| : Zﬂﬂ— ~1:

= Strongest diffusion during Constant-Roll epoch!
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Primary Conclusions

@ During SR-I phase, 221;” = (%)2

L3 (3
12- 12

2AN

E¢¢ . |Z¢ﬂ-| : 27” ~1:

@ Immediately after the transition, X;; oc e™ , and

Z¢¢:‘E¢ﬂ-‘izﬂ-ﬂ-211¢42¢42

@ During CR phase, Zgg ~ 92(r2—11) [F(VQ)] ’ 02("1_”)22}2

E(M) : |E¢ﬂ-| : Zﬂﬂ— ~1:

= Strongest diffusion during Constant-Roll epoch!

What is the nature of PDF P[(]? Work in Progress
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@ Mode functions evolved in a fixed (deterministic
background). **Figueroa et. al 2021

@ Computed in spatially-flat gauge. **Pattison et. al 2019

@ Only a single transition was considered analytically
(duality).

@ Both ® and II were treated stochastically. **Tomberg 2022

@ Pppy in terms of ¢ rather than ¢. **Tada, Vennin 2020
Questions (even basic ones) & Comments are most welcome.

Cosmology from Home is my favourite Conference!!
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EXTRA SLIDES

and Stochastic Inflati



Set-up for Analytical Computation

@ ng — is piece-wise constant = 17; ~ const.

@ y; is piecewise (positive) constant.

k
@ Introduce new time variable | T = —k7 = i
a

MS Egn =

d?uy, 1/2—1/4
12 — /=
d72 + |: T2

:|’Uk=0

General solution is given by
@ dS mode functions

o (T) = \/%_k {Oék <1 + %) e’ + By, (1 - %) eiT}

@ Beyond dS approximation

on(T) = VT [C HO(T) + G, HO(T), |
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Determining Co-efficients

o Apply Bunch-Davies initial conditions for modes exiting
before the transition 7" > T}

vg(T)

ﬁ
T—o00 vV 2k

o Apply Israel Junction matching conditions at transition

B

vil(11) = vP(r) (Continuity)

"

T1+ 2 A . c 1
d (1) (Differentiability)

T—U
P k

Tf 1

PBHs and Stochastic Inflation
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Application of the technique

o A single instantaneous transition from SR — USR
using dS mode functions.

o A single instantaneous transition from SR — USR
using Hankel functions.

, CAPT, Nottingham PBHs and Stochastic Inflation



Application of the technique

o A single instantaneous transition from SR — USR
using dS mode functions.

o A single instantaneous transition from SR — USR
using Hankel functions.

Why a single transition 7

Wands duality between USR and CR
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In the absence of transition

For v = constant

v—2) [FIE?EZ;)} ’ (%)2 72(3-v) [1 L g2y ]

_2(w=3)[ T 1P/ H\2/3 B 2(3-v) 2(5 — 2v) 5

How =2 =9 [r(z/z)] (E) (5 ")T : [H 4(u_1)(3_2u)T + ]
2 3 T'(v) 2/ HN\2/3 2 5 ;_,) 2(7 — 2v) 2

P =2 =9 |:F(3/2)] (E) (5 _V) (3 [1+ 4(u71)(372u)T +]
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Correlation

_ [Re(Egn)|
V/ Zgg X

With |72 = 1 — det(Zi;)/ (Zpp Zrr)

11
1.41 —— KKLT with Gaussian bump
. 12 . === KKLT (without feature)
2 D
1
s 8
° S
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H °
£ ==0 0.
= <
2 <
g S 0
S 5
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5
o o
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Stochastic Inflation



Multiple Transitions
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Noise-Matrix: Three Transitions

1 1 1
o |When USR is dual to CR| |
T T 1
T A |USR}
| I— 1 ]
—./ :—_MV\ : I/
Talo? /‘: i
£ ! 1
;e ; Ez:l |SR-1
= /\ 1
AT — i | —
X | ! !
3 SR-1 CR iy
= 1 i —
g 10716 i : i
8 |
z ' T1
L —— %y /
! | — Re(2y) | .
| — =, i .
i : !
10 10 15 20 25 30
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Noise-Matrix: No Duality

1 1 1
1 1 1
i USRy
/_ : |:’
~ — | ;
o 1071 //: i
E 1 1
o ~ : EZZI ESR-I
= - ! !
W: 1074 ~ ; | :
E SR-I CR :
S 1 1
@ 107 ! :
3 |When USR is NOT dual to CR] !
2 -Tl
L — S 1
10718 4 4 }
|~ Re(Zy) |
P e 1
1020 i : :
10 15 20 25 30

Ne
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Power-spectrum: No Duality

10! T
— PSR is NOT dual to CR
il === en %,
__________________ -==f1_ 2,
g == 1N
(\f 10-5 Steepest Growth 1‘:’: \\ —
E 4 \ N\ /
: NN e
o 107 U 4
1] i Vil [ —
Qo C \ 4
@ MB Scales i | SR-II
g g0 n A [T d
g X RS SR-I 1
e ng ~ —0.035 T2
101 0~ 3
i N3 =o—12
m ~0 he~3
10713 H
107° 10° 10% 10° 10° 10" 10 10
k (in Mpc ™)
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From N — (., (Stochastic 0N Formalism)

By Stochastic éN formalism, |( = ((P) =N — (N (D))

Average no. of e — folds (N (®)) = b N Py(N)dN
0
An(®
= wiay) = 3 A

Threshold |, = (. + (N(®)) = . + Z A (P)
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Relevance for PBH Mass Function

With | Po(N) =Y Ape V| TN, = G+ (V(@))

And = (N(@) =3 Azgq’)
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PBH Mass Function: Gaussian vs Non-Gaussian

Stochastic NG |gN%(®) = Z ‘AX((D) o An [CeHN(D))]

n

¢
. . g )
Classical Gaussian |%(®) = —2_—¢ &

V2mg

With

9 oy [T dk
@ = [ P

Gaussian approx. MIGHT under-estimate PBH
abundance by several orders of magnitude
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