MF-Box: Multi-fidelity and multi-scale emulation, and PRIYA's large $Ly\alpha$ emulator using Astrid simulations

Ming-Feng Ho UC Riverside NASA FINESST FI jibancat.github.io

MF-Box (arXiv:2306.03144) PRIYA (arXiv:2306.05471)

L2

Jul 2023 | Cyberland

jibancat.github.io

Simeon Bird (UCR Astro)

Martin A. Fernandez $(UCR Astro \rightarrow CSU)$ climate science)

HR

Astrid simulation collaboration: Yueying Ni (CfA), Nianyi Chen (CMU), Patrick Lachance (CMU), Xiaowen Zhang (CMU), James Davies (Scuola Normale Superiore), Mahdi Qezlou (UCR), Yu Feng, Tiziana Di Matteo (CMU), Rupert Croft (CMU)

Christian Shelton (UCR CS)

Pippi Longstocking, created by Astrid Lindgren

Need more small scales? Common approach: Run higher resolution

Me: I can see lots of structures

Simulators say: Just increase resolution (more particles or denser grids)

 $256 \,\mathrm{cMpc/h}$

25.6 cMpc/h

• a lack of structure at small scales

- More small-scale structures
- You'll have almost the same information at large scales
- Simulators say: But be cautious, as you might hit the budget limitation for computation time. Increasing particle loads is proportional to O(N log(N))

Multi-fidelity: The solution? Balancing speed and accuracy

See Ho, Bird, Shelton (2022) on multi-fidelity matter power spectrum emulation

jibancat.github.io

Cosmology from home - 2023

error

Use tons of Low-fidelity to understand large scales, Only a few of High-fidelity to refine information at small scales

But, simulators usually take a shortcut Simulators: Separating scales for efficiency

Me: Are the physics at large scales correct?

Simulators: no money/time. Just run a large volume low-quality test simulation.

Is my subgrid model at small scales correct?

Question: How can we integrate this thought process into a coherent Bayesian model for future decision-making?

Simulators: no money/time. Just run a small volume low-quality test simulation.

- We can examine large-scale statistics in the test simulations. For example, matching linear theory at large scales.
- We can evaluate small-scale statistics in the test simulations. For example, tuning the stellar wind model by matching smallscale statistics.

Multi-scale problem Balancing different scales

Small scale error

HF

Large scale error

Combining scales in one Bayesian model

MF-Box (arXiv:2306.03144)

jibancat.github.io

6

19

Interpolating cosmology with limited HF simulations Simulations as a Bayesian model(θ , resolution, volume)

Expensive information (HF)

Comparing MFEmulator and MF-Box

- Works for summary statistics
- **GP** requires minimal training/tuning time (almost effortless, just a click)
- θ : simulation input parameters
- f: summary statistics

MFEmulator (Ho (2022))

MF-Box as a decision-making tool Optimizing computational budget allocation

• Objective: Maximize the accuracy of predicted summary statistics Emulator Error ~ $\mathcal{O}(\rho_{L1} \cdot n_{L1}^{-\frac{\nu_{L1}}{d}} + \rho_{L2} \cdot n_{L2}^{-\frac{\nu_{L2}}{d}} + n_{HF}^{-\frac{\nu_{HF}}{d}})$ Condition: Subject to a limited budget (C: Cost) $n_{\rm L1} \cdot C_{\rm L1} + n_{\rm L2} \cdot C_{\rm L2} + n_{\rm HF} \cdot C_{\rm HF} \leq C$: limited budget Lagrangian, solving Karush–Kuhn–Tucker (KKT) conditions: $\mathscr{L}(n_{L1}, n_{L2}, n_{HF}, \lambda) = \eta(\rho_{L1} \cdot n_{L1}^{-\frac{\nu_{L1}}{d}} + \rho_{L2} \cdot n_{L2}^{-\frac{\nu_{L2}}{d}} + n_{HF}^{-\frac{\nu_{HF}}{d}})$ $+\lambda(n_{\mathrm{L}1}\cdot C_{\mathrm{L}1}+n_{\mathrm{L}2}\cdot C_{\mathrm{L}2}+n_{\mathrm{HF}}\cdot C_{\mathrm{HF}}-C)$

 \propto correctness / cost

Ho (2023), original formulation: Ji (2021)

ν :smoothness ρ : fidelity correlation d : parameter dimension

Empirical error analysis with MF-Box Estimating errors from simulation runs

jibanca

$$\sim \mathcal{O}(\rho_{L1} \cdot n_{L1}^{-\frac{\nu_{L1}}{d}} + \rho_{L2} \cdot n_{L2}^{-\frac{\nu_{L2}}{d}} + n_{HF}^{-\frac{\nu_{L2}}{d}})$$

19

MF-Box for future budget allocation Optimize resources for different resolution/volumes

MF-Box (arXiv:2306.03144)

jibancat.github.io

MF-Box's performance in combining scales Enhancing small scales with smaller boxes

 $small \leftarrow large volume$

MF-Box (arXiv:2306.03144)

Leverage accurate information from L2 Selecting optimal information and canceling systematics

MF-Box (arXiv:2306.03144)

jibancat.github.io

astrophysics parameters : α_q , z_{Hi} , ϵ_{AGN} , z_{Hei} , z_{Hef}

Bird 2023, arXiv:2306.05471

jibancat.github.io

HR

LR

Cosmology from home - 2023

cosmological parameters : $n_P, A_P, h, \Omega_M h^2$

PRIYA: New Lya Simulations with realistic DLAs Mock $Ly\alpha$ observations with realistic damped Lyman- α absorber population

1.00

0.75 -

₩ 0.50

0.25

0.00

• 480 x 480 x 3 very dense HR slightlines in grids to beat down the noise:

> Directly plot Lya absorptions in 2D. Lots of skewers!

Realistic population of DLAs (known contamination of 1D flux), match SDSS DR16's CDDF (Ho 2021):

Bird 2023, arXiv:2306.05471

jibancat.github.io

Subtle differences at small scales A small volume comparison HF LF

10 cMpc/h

10 cMpc/h

(Bird 2023, arXiv:2306.05471)

jibancat.github.io

Cosmology from home - 2023

Multi-fidelity method (without MF-Box) corrects the resolution up to 1% on 1D flux P(θ)

Predicted 1D flux $P(\theta)$ from MFEmulator Include variations of astrophysical feedback/reionization parameters **HI Patchy Reionization** AGN Feedback (Battaglia (2013)) (Ni (2022))

$$P(k) = \mathbf{A}_{\mathbf{P}} \left(\frac{k}{0.78 \,\mathrm{h/Mpc}}\right)^{n_{\mathbf{P}}-1}$$

*M*_{BH} ≡ $(c_{s}^{2} +$

$$E_{\rm AGN} = \frac{\epsilon_{\rm AGN}}{10} \dot{M}_{\rm BH} c^2$$

jibancat.github.io

IGM temperature boosted to 15,000 K, observational constraint at $z \sim 6$ (Gaikwad 2020)

Check Simeon Bird's talk, "New Cosmological Analysis of the eBOSS Lyman-a Forest," (July 6, late session) for the cosmological inference results using PRIYA simulation suite.

Conclusion **MF-Box and PRIYA emulator**

- MF-Box: Optimizing budget allocation, a decision tool for predicting budgets and writing proposals.
- PRIYA: A multi-resolution galaxy formation simulation suite for Lya forest
- PRIYA: A big emulator varies astrophysical effects- AGN feedback, reionization, and cosmology
- MFEmulator/MF-Box: Expanding beyond cosmic emulation, serving as surrogates for galaxy formation simulations
- Chat with us to use MF-Box or PRIYA simulations!

MF-Box (arXiv:2306.03144) (arXiv:2306.05471) PRIYA

MF-Box: A multi-fidelity multi-scale tool, combining f(resolution, scale, θ) using Bayesian approach.

Ming-Feng Ho (jibancat.github.io) ()Simeon Bird (sbird.github.io) Astrid simulation code (MP-Gadget)

Cosmology from home - 2023

19