

Impact of Property Covariance on Galaxy Cluster Weak-lensing Mass Calibration

Zhuowen (Ben) Zhang, with Arya Farahi, Erwin Lau, Daisuke Nagai, Joshua Frieman

Cosmology from Home 2023

Weak lensing Observables

Cluster lensing – excess shear measurement of source galaxies when lensed by galaxy clusters.

$$\Sigma(R) = \Omega_m \rho_{\rm crit} \int_{-\infty}^{+\infty} \mathrm{d}z \, \xi_{\rm hm}(\sqrt{R^2 + z^2}).$$

 $\Delta \Sigma = \bar{\Sigma}(< R) - \Sigma(R)$

Richness – probabilistic number count of galaxies detected using red-sequence

$$\lambda = \sum p(oldsymbol{x}|\lambda) = \sum_{R < R_c(\lambda)} rac{\lambda u(oldsymbol{x}|\lambda)}{\lambda u(oldsymbol{x}|\lambda) + b(oldsymbol{x})}.$$

Cluster Cosmology with optical surveys

• Combine cluster abundance and Weak lensing cluster mass estimates to simultaneously constrain cosmology and the richness-mass relation

PC: Matteo Costanzi

Systematic Biases with Cluster Observables

- Uncertainty shear measurements
- Photo-z uncertainty
- Triaxiality
- Miscentering
- Line-of-sight projection
- Membership dilution
- Modeling systematics
- Cosmology dependence

In DES Y1:

Total systematic uncertainty: 4.3% Statistical: 2.4% Statistical uncertainty dominated by shape noise:

- $n_s = ~5$ galaxies/arcmin^2
- n_s = ~30 galaxies/arcmin^2 for next-gen optical survey, e.g. Rubin (LSST)

Systematics on par with statistical errors, soon to dominate for near future surveys

T. McClintock+19

Unconstrained systematic — Correlated scatter

hmf(ln M, z) =
$$\frac{\mathrm{d}n_{\mathrm{hmf}}(\ln M, z)}{\mathrm{d}\ln M} \approx A(z) \exp\left[-\gamma(m, z)\ln M\right]$$

$$\langle \Delta \Sigma \mid N_{\text{gal}} \rangle_1 = \langle \Delta \Sigma \mid M \rangle + \frac{\gamma_1}{\alpha_n} \times \text{Cov}(\Delta \Sigma, \ln N_{\text{gal}} \mid M, z),$$

Dataset: MDPL2 N-body simulation with SAGE semi-analytic galaxy model

Goal: Set informative priors using mock measurements of the correlated scatter between WL-observables

This term left unconstrained by McClintock+19, DES 2020

Outline: Data Vector

Ngal: True Richness Estimator

• Number count of galaxies enclosed inside a radius

3D Cluster Boundary Definition $\{R_{200c}, R_{vir}, 1 \text{ Mpc/h}\}$

- No stellar, color cut; no projected galaxies along LOS
- Test for robustness against different radius definitions.

cluster lensing

- Computed directly from DM particles
- (M,z) span optical cluster range
- Plotted against cosmology dependent models
 - c-M relation
 - halo bias
- Given errors are consistent with models but unable to distinguish

KLLR – Kernel Local Linear Regression A. Farahi+21

Local/global scatter of cluster lensing using KLLR

Local log-linear richness-mass relation using KLLR

Outline: Cov. measurement and modeling

- Negative at small scales, null at large scales
- Modeled as an offset error function
- Four parameter model

$$\tilde{x} = (x - \gamma)/\tau$$

 $s\left(\operatorname{erf}\left(\frac{\sqrt{\pi}}{2}\tilde{x}\right) + g\right)$

11

Modeling: Impact of **Radius definition**

10²

10¹

Ngal

12

Binning by halo peak height $v = \frac{\delta_c}{\sigma(R,a)}$

F

>

$$\langle \Delta \Sigma \mid N_{\text{gal}} \rangle_1 = \langle \Delta \Sigma \mid M \rangle + \frac{\gamma_1}{\alpha_n} \times \text{Cov}(\Delta \Sigma, \ln N_{\text{gal}} \mid M, z)$$

$$\langle \Delta \Sigma | N_{\text{gal}} \rangle_2 = \langle \Delta \Sigma | N_{\text{gal}} \rangle_{\text{fid}} + \left[\frac{x_s}{\alpha_n} (\gamma_1 + \gamma_2 \delta_n) \text{Cov}(\Delta \Sigma, \ln N_{\text{gal}} | M, z) \right]$$

- ~1% bias on stacked lensing at small scales
- Propagated into 2-3% mass bias

Source of systematic	SV Amplitude uncertainty	Y1 Amplitude Uncertainty
Shear measurement	4%	1.7%
Photometric redshifts	3%	2.6%
Modeling systematics	2%	0.73%
Cluster triaxiality	2%	2.0%
Line-of-sight projections	2%	2.0%
Membership dilution + miscentering	$\leqslant 1\%$	0.78%
Total Systematics	6.1%	4.3%
Total Statistical	9.4%	2.4%
Total	11.2%	5.0%

McClintock+19

Uncorrelated scatter 2-3% bias needs to be modeled!

Outline: Secondary halo parameter dependence

Secondary halo parameter dependence

$$\langle \ln N_{\text{gal}} \mid \Pi, M, z \rangle = \pi_n(m, z) + \alpha_n(m, z) \ln M + \vec{\beta}_n^{\mathsf{T}}(m, z) \cdot \vec{\Pi} + \epsilon_n;$$

$$\langle \Delta \Sigma \mid \Pi, M, z \rangle = \pi_\tau(m, z) + \alpha_\tau(m, z) \ln M + \vec{\beta}_\tau^{\mathsf{T}}(m, z) \cdot \vec{\Pi} + \epsilon_\tau,$$

 $\operatorname{Cov}(\Delta\Sigma, \ln N_{\text{gal}} \mid M, z) = \operatorname{Cov}(\vec{\beta}_{\tau}^{\mathsf{T}} \cdot \vec{\Pi}, \vec{\beta}_{n}^{\mathsf{T}} \cdot \vec{\Pi}) = \vec{\beta}_{\tau}^{\mathsf{T}} \operatorname{Cov}(\vec{\Pi}, \vec{\Pi}) \vec{\beta}_{n}.$

Shin & Diemer+23 quantified correlation of secondary halo parameters

This project provides the slopes eta

Parameter	Explanation
П	Set of secondary halo parameters
Γinst	instantaneous mass accretion rate (MAR)
Γ^*_{100Myr}	mean MAR over the past 100 Myr
$\Gamma^*_{\rm dyn}$	mean MAR over virial dynamical time
Γ^*_{2dyn}	mean MAR over two virial dynamical time
Γ _{peak}	Growth rate of peak mass from current z to z+0.5
$a_{1/2}$	Half mass scale factor
Cvir	$R_{\rm vir}$ concentration
T/ U	Absolute value of the kinetic to potential energy ratio
$X_{ m off}$	Offset of density peak from mean particle position (kpc h^{-1})
ρ_{Π_a,Π_b}	Correlation coefficient between secondary halo parameters

Cov. dependence on secondary halo parameters

 $\operatorname{Cov}(\Delta\Sigma, \ln N_{\text{gal}}|M, z) = \sum_{i} \beta_{n,i}(m, z) \operatorname{Cov}(\Delta\Sigma, \Pi_{i}|M, z).$

Secondary parameters **fully** explain the covariance

• i.e. Cov remaining = 0

No dominant secondary halo parameter; all noisy and bias indicators of time formation

Comparison with other works: Projection effects?

Takeaways from this project

- Negative covariance at small scales, null at large scales.
- Folds into a mass bias of 2-3% in the halo mass estimates in most bins.
- Dependence with peak height suggests time formation history dependence of the covariance
- Physical origin fully explained by the secondary halo parameter
- Difference between other works likely due to projection effects