

Evolution of Mixed FDM-Baryon Systems

1

Yourong Wang & Richard Easther The University of Auckland, New Zealand

Cosmology from Home (CfH23) Online June 2023

CFH23_FW_Final - 23 June 2023

Evidence for and **Constraints** on Dark Matter

Galaxy Group Gravitational Lensing

Local

Large-Scale Structure

CMB Power Spectrum

Non-Local

Structural Formulation Simulation by Göttingen Cosmology CMB Anisotropy by WMAP

Light Bosons

Macroscopic

Modified Gravity

Dark Matter Candidates From All Across Modern Physics

Other Particle

Macroscopic

Modified Gravity

(Simplification)

Dark Matter Candidates From All Across Modern Physics

4

Adapted from A New Era in the Quest for Dark Matter Bertone, G. & Tait, T. (2018).

5

Dark Matter Candidates

From All Across Modern Physics

ULDM Ultralight Dark Matter

A bosonic scalar field **minimally** coupled to gravity with corresponding particle mass around **10**-22* eV.

*Bounds contested between observational constraints.

Very Long de Broglie Wavelengths

Behaviour at small scales modulated by quantum mechanics.

Lack of Direct DM Particle Detection on Earth.

ULDM Ultralight Dark Matter

Core Cusp Problem

Smooth Density Profiles in Core Regions of Galaxies

7

NewScientist

Space

Weird dark matter waves seem to warp the light from distant galaxies

Ultralight dark matter particles that behave like waves, called axions, seem to be a better match for gravitational lensing measurements than more traditional explanations for dark matter

By Leah Crane

💾 20 April 2023

Anomalies in Gravitational-Lensed Images Revealing Einstein Rings Modulated by Wavelike Dark Matter arxiv 2304.09895

ULDM Ultralight Dark Matter

8

 $S = \frac{1}{2} \int d^4x \sqrt{-g} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - m^2 \phi^2 \right)$

A nonlinear modification to Schrödinger Equation, giving the wavefunction an associated mass density.

$$\frac{1}{m}\nabla^2 + V \bigg[\psi$$

$$4\pi m |\psi|^2$$

 $\bullet \bullet \bullet$

External Gravitational Potentials Non-Gravitational Self-Interaction Expansion of Universe

Schrödinger-Poisson Solitons

May form dynamically in ULDM haloes. Can obtain the general radial profile numerically*.

Know some scaling laws: lighter solitons are puffier.

Quantum Pressure

(Self) Gravity

Schrödinger-Poisson Solitons

Main object of interest in my ULDM work so far. In isolation, we can perform quasi-normal mode decompositions on them. Quantum pressure is rather weak, so external potentials might profoundly change the shape and dynamics of solitons.

Schrödinger-Poisson Solitons: Perturbation Theory Zagorac et al, arXiv 2109.01920

Madelung Picture of Quantum Mechanics

 $\Psi(\mathbf{X},t) \equiv \sqrt{\rho(\mathbf{X},t)}e^{i\theta(\mathbf{X},t)}$

Power of Madelung Picture

- In some sense, we model a quantum wavefunction as a fluid.
- CDM models) using an effective wavefunction.

• Can even be generalised to work in the opposite direction, i.e. to capture the dynamics of a fluid (for example, in multi-streaming

> Making (dark matter) waves: Untangling wave interference for multi-streaming dark matter Gough, Uhlemann, arXiv 2206.11918

Caveats (?) of Madelung Picture

- structures (aliasing)
- Phase (and hence momentum) information susceptible to numerical fluctuations when density is small.
- Such fields are spin-less by construction.
 - ULDM can evolve or talk to their environment?

• Spatial resolution imposes a speed limit on all simulated FDM

• Does this mean our simulations lack some fundamental ways that

Scalar dark matter vortex stabilization with black holes Glennon et al, arXiv 2301.13220

 $\bullet \bullet \bullet$

External Gravitational Potentials Non-Gravitational Self-Interaction Expansion of Universe

- Each method brings in a unique set of advantages and disadvantages (performance; features preserved or cut off).
- Further, pseudo-spectral methods introduces periodic boundaries on the domain over which it is employed.
- Advancing spatial or temporal steps over empty space seems like a waste of compute resources.
 - Want to focus on regions of interest.

- S-P equation is solved on a mesh grid with either pseudo-spectral or finite difference methods.

• Overall strategy:

- Use adaptive mesh refinement.
- FFT on the root grid, finite difference on refined grids.

AMReX-Astro/Nyx

An adaptive mesh, N-body hydro cosmological simulation code

Nyx: A Massively Parallel AMR Code for Computational Cosmology Almgren *et al. ApJ* 765, 39

AxioNyx

AxioNyx: Simulating Mixed Fuzzy and Cold Dark Matter Schwabe *et al*. arXiv 2007.08256

Our Pipeline

- Built upon the public version of AxioNyx 2
- Grid-based hydrodynamical code coupled to axions via gravity.
- For the moment, no radiative cooling or feedback mechanisms are implemented.
- Both systems can trigger grid refinement subject to certain criteria.
- Compatibility with other tool sets like Nyx and PyUltralight.

Spherical Collapse

- A highly dynamical process, simulated within an expanding background.
- combined system evolve in time under own gravity.
- speak.

• Take an spherically over-density of both ULDM and gas, and let the

• First high-resolution runs on NeSI are being conducted as we

Sph. Collapse: ULDM Overdensity

Sph. Collapse: Gas Overdensity

Sph. Collapse: Density Evolution in Time

Just a Start ...

- Higher resolution runs for the spherical collapse case.
- Bigger boxes with more realistic initial overdensity profiles.
- Systematically compare simulation results with ULDM-only runs
 - highlight how the system's evolution depends on baryon component.
- Implement rudimentary star formation and feedback considerations in the code.

Just a Start ...

• Compare with and extend other works in this direction, e.g.

If dark matter is fuzzy, the first stars form in massive pancakes Kulkani *et al. ApJL* 941 L18

Summary

- ULDM is an interesting dark matter candidate.
- leads to a rich array of interesting dynamics.
- Coupling our ULDM simulator to hydrodynamical code is an important step in constructing testable models of ULDM

• Modelling its behaviour with a wavefunction in Madelung picture

properties, and bridging our predictions with astrophysics.

MARSDEN FUND

TE PŪTEA RANGAHAU A Marsden

Acknowledgements

