

LiteBIRD Joint Study Group

Over 300 researchers from Japan, **North America and Europe**

Team experience in CMB experiments, X-ray satellites and other large projects (ALMA, HEP experiments, ...)

July 2023

LiteBIRD overview (Tijmen de Haan, KEK, for Cosmology from Home 2023)

LiteBIRD Team at Okayama face-to-face meeting, December 2022

LiteBIRD overview

- Lite (Light) satellite for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019
- Expected launch in late 2029 with JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B*-modes
- Final combined sensitivity: 2.2 µK·arcmin

July 2023

LiteBIRD overview (Tijmen de Haan, KEK, for Cosmology from Home 2023)

Hazumi+ SPIE 2020

LiteBIRD main scientific objectives

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) *B*-mode power is proportional to the tensor-to-scalar ratio, r
- Current best constraint: r < 0.032 (95% C.L.)
- (Tristram et al. 2021, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on *r* by a factor ~ 50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5- σ detection of the reionization

 $(2 \le \ell \le 10)$ and recombination $(11 \le \ell \le 200)$ peaks independently

• Huge discovery impact (evidence for inflation, knowledge of its energy scale, ...)

July 2023

LiteBIRD other science outcomes

- The mission specifications are driven by the required sensitivity on r
- Meeting those sensitivity requirements would allow to address other important scientific topics, such as:
 - 1. Characterize the *B*-mode power spectrum and search for source source fields (e.g. scale-invariance, non-Gaussianity, parity violation, ...)
 - 2. Power spectrum features in polarization
 - Large-scale *E*-modes
 - **Reionization** (improve $\sigma(\tau)$ by a factor of 3)
 - Neutrino mass ($\sigma(\sum m_{\nu}) = 15 \text{ meV}$)
 - 3. Constraints on cosmic birefringence
 - 4. SZ effect (thermal, diffuse, relativistic corrections)
 - 5. Elucidating anomalies
 - 6. Galactic science
 - Characterizing the foreground SED
 - Large-scale Galactic magnetic field
 - Models of dust polarization

July 2023

LiteBIRD scanning strategy

Boresight

- 3-year survey, Sun-Earth L2 Lissajous orbit
- Precession angle: $\alpha = 45^{\circ}$
- Spin angle: $\beta = 50^{\circ}$

Nhit map for a **3-year survey Galactic projection**)

July 2023

Sun

LiteBIRD spacecraft overview

- 3 telescopes are used to provide the 40-402 GHz frequency coverage
 - 1. LFT (low frequency telescope)
 - 2. **MFT** (middle frequency telescope)
 - 3. **HFT** (high frequency telescope)
- Multi-chroic transition-edge sensor (TES) **bolometer arrays** cooled to 100 mK
- Polarization modulation unit (PMU) in each telescope with rotating half-wave plate (HWP), for 1/*f* noise and systematics reduction
- Optics cooled to 5 K
 - Mass: 2.6 t
 - Power: 3.0 kW
 - Data: 17.9 Gb/day

July 2023

Low Frequency Telescope (LFT)

July 2023

Optical axis

Front hood

- Polarization Modulation Unit (PMU) as the first sky-side optical element
- Crossed-Dragone design
 - Mirrors and aperture stop at 5 K
 - Made of aluminium
- Field of view: $18^{\circ} \times 9^{\circ}$
- Strehl ratio > 0.95 (@ 140 GHz)
- Aperture diameter: 400 mm
- Frequency range: 40-140 GHz
- Angular resolution: 70-24 arcmin
- F#3.0 & cross angle of 90°
- Cross-polarization < -30 dB
- Rotation of the polarization angle across the FoV $<\pm 1.5^{\circ}$
- Weight < 200 kg

LiteBIRD overview (Tijmen de Haan, KEK, for Cosmology from Home 2023)

Sekimoto+ SPIE 2020

Middle-High Frequency Telescopes (MFT/HFT)

July 2023

- Refractive optics
- Each telescope has PMU with a half-waveplate (HWP)
- Optics at 5 K
- Field of view: 28°
- Simple and high heritage from ground experiments
- Compact (mass & volume)
- Simplified design for filtering scheme
- PP lenses + ARC
- Weight 180 kg

	MFT	HFT
v (GHz)	100-195	195-402
Ap. diameter (mm)	300	200
Ang. res. (arcmin)	38-28	29-18

28° FoV

Baffle MFT (5K)

— HWP MFT (<18K)

Cold stop MFT (5K)

1st lens MFT (5K)

Focal plane configuration

July 2023

LiteBIRD sensitivities

July 2023

• Projected polarization sensitivities for a 3-year full-sky survey Best of 4.3 µK·arcmin @ 119 GHz (Hazumi+ 2020) • Combined sensitivity to primordial CMB anisotropies: 2.2 μK·arcmin

LiteBIRD cryogenic system

July 2023

Polarization Modulation Unit (PMU)

- Rotating a birefringent plate to modulate polarization
- The first sky-side optical element

July 2023

Sakurai+2020 Komatsu+2020 Columbro+2020 **Toda+2020** 🗉 Sugiyama+2020

• LFT PMU BBM at Kavli IPMU:

- Rotation test of superconducting magnetic bearing system in the 4K cryostat
- Stable rotation at cryogenic temperature (< 10 K)

LiteBIRD readout system

- Digital frequency multiplexing (DfMux) readout technology enables the readout of many Transition Edge Sensors (TES) with fewer components and a low wire count.
- Superconducting resonators are used to assign unique frequency channels to the TES sensors.
- The signal is read out using a low-noise SQUID amplifier and an FPGA controller.
- This approach saves on mass, volume, power consumption, and cost.
- The technique draws its heritage from ground-based CMB experiments.

SQUID controller board

SQUID controller assembly

Digitizer Signal Processing Unit assembly

July 2023

Digitizer assembly

Data Fit	

Foreground cleaning

Foreground modeling

• **Synchrotron**: curved spectrum (AME is absorbed in the curvature)

$$[Q_{\rm s}, U_{\rm s}](\hat{n}, \nu) = [Q_{\rm s}, U_{\rm s}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{\rm s}(\hat{n}) + C_{\rm s}(\hat{n})\ln(\nu/\nu^{\rm c})}$$

• **Dust**: modified blackbody

July 2023

 $[Q_{\rm d}, U_{\rm d}](\hat{n}, \nu) = [Q_{\rm d}, U_{\rm d}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{\rm d}(\hat{n}) - 2} \frac{B_{\nu} \left(T_{\rm d}(\hat{n})\right)}{B_{\nu_{\star}} \left(T_{\rm d}(\hat{n})\right)}$

8 parameters in each sky patch

• "Multipatch technique" (extension of xForecast), to account for spatial variability. $12 \times (N_{\text{side}})^2$ patches \Rightarrow 6144 parameters with $N_{side} = 8$

Impact of foregrounds residual

Foreground cleaning

	200 -
• "Multipatch technique" (extension	175 -
 of xForecast) Distribution of the recovered <i>r</i> in 	150 -
1000 simulations with input $r = 0$,	.125 -
with and without foreground residuals	loo -
• Bias from foreground (PySM d1s1) residuals is found to be small	# 75 -
• Final value: $r = (3.3 \pm 6.2) \times 10^{-4}$	50 -
	25 -
	0

July 2023

