New Cosmological Analysis of the eBOSS Lyman-α Forest

Simeon Bird Dr. Martin Fernandez Ming-Feng Ho Mahdi Qezlou

arxiv:2306.05471

What is the Lyman- α forest?

Absorption from neutral hydrogen in quasar Traces dark matter at z=2-5

eBOSS SDSS DR14

- 1D Flux power along line of sight to quasar
- v = H(z) (a r)0.06-At z=3: , 0.04 *kP_F(k)/π* k = 0.001 s/km ~ 0.1 h/Mpc 0.02 KODIAQ z=2.6 $k = 0.02 \text{ s/km} \sim 2 \text{ h/Mpc}$ DR14 = 2.6DR9 z = 2.6..... 0.00 Small non-linear scales! 0.005 0.015 0.0100.020 k_F (s/km)

PRIYA Cosmology Suite

Simulations to model growth and gas pressure

3 High fidelity: 3072³
48 Low fidelity: 1536³
120 Mpc/h box

ASTRID galaxy model

Simulation Interpolation

- For inference need simulation output for all cosmologies
- Gaussian Process interpolation using ~50 simulations
 Interpolation needs 50 large simulations

Multi-Fidelity Emulation

Combine simulations at **different** resolutions.

- Low resolution for cosmology
- Correct with high resolution.
- **Cosmology-dependent** correction function.

Leave-one-out Validation

Emulation is 1% accurate! Multi-fidelity leave-one-out is missing 1/3 simulations

Lyman-alpha Forest Multi-Fidelity Parameters:

Power spectrum:
$$P(k) = A_P \left(\frac{k}{0.78h/Mpc}\right)^{n_P-1}$$

Hubble parameter is included, but badly measured $\Omega_{\rm M}h^2$ - Growth rate Helium & hydrogen reionization

Lyman-alpha Forest Multi-Fidelity Circle: HF. Cross: LF.

Parameters:

 $A_p n_p - cosmology$ $z_i z_f \alpha_q - helium reionization$ $z_{HI} - hydrogen reionization$ $\Omega_M h^2 - Growth rate$ $\epsilon_{AGN} - BH feedback$

n _P - <u>×≫≪××≫≪×≫</u> ≪××∞××	<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
0.8	0.995
A _p - <u>××∞××××××××××××××××××××××××××××××××××</u>	<pre>(X)@X X X X X X X X X X X X X X X X X X X</pre>
1.2e-09	2.6e-09
z¦ ^{Hell} - <u>×××××××××××××××××××××××××××××××××××</u>	<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
3.5	4.1
z _f ^{Hell} - <u>×≫⊗××≫</u> ××∞××∞××	<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
2.6	3.2
α _q - <u>×××××⊗×∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞</u>	
1.3	2.5
h- <u>×∞×××∞××∞∞×∞∞</u> ∞	<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
0.65	0.75
Ω _M h ² - <u>×⊗×∞×⊗×⊗××××××</u> ×	<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>
0.14	0.146
z ^{HI} - <u>×××××××⊗</u> ××××∞×	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.5	8.0
٤ _{AGN}	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0.03	0.07

Reionization Models

- Patchy hydrogen reionization model
- Patchy helium ~30 Mpc bubbles z ~ 3.8 2.8
- . Match gas temperature history

Likelihood function

Posterior constraints with simulated data

Included:

- Metals
- DLAs
- Temperature data

eBOSS SDSS DR14

Prefers spectral slope $n_s = 0.954 \pm 0.006$

Planck has:

 $n_s = 0.965 \pm 0.004$

Slight 2 σ tension: why?

Preliminary DR14

DR14 data:

 $n_P \sim 0.9!$ Too low!

Driven by z= 2.2, 2.4

(Preliminary) DR14

Best-fit power:

z= 2.2 & 2.4 are discrepant with model:

AGN feedback? Systematic?

(Preliminary) DR14

Best-fit power:

Other Lyman alpha data suggests a systematic, but not conclusive

(Preliminary) DR14

Conclusions 2306.05471

Reanalysis of eBOSS Lyman alpha data

PRIYA suite and multi-fidelity emulation

Generally weaker constraints: more room for theorists!

Until DESI!

