Noether Symmetries in Extended Teleparallel Gauss-Bonnet Cosmology

Siddheshwar Kadam
BITS-Pilani Hyderabad Campus, India

Cosmology from Home-2023

June 21, 2023

Outline of Presentation

- Teleparallel Equivalent of GR.
- Mathematical Formalism.
- Noether Symmetry Approach.
- Outcome of the study.

Teleparallel Equivalent of GR

- To unify electromagnetism and gravitation, the first attempt to modify GR was made by H. Weyl in $1918{ }^{1}$.
- In the late 1920s Einstein himself attempted to unify electromagnetism and gravitation, using the mathematical structure of teleparallelism.
- The TEGR is formulated in terms of the tetrad field and of the corresponding torsion tensor, which is the antisymmetric part of the Weitzenböck connection.
- Even though teleparallel gravity is dynamically completely equivalent to general relativity, it has a very different physical interpretation.
- The modification in the geometrical part leads to several extended theories of gravity such as $f(T)$ gravity ${ }^{2}, f(T, B)$ gravity ${ }^{3}, f\left(T, T_{G}\right)$ gravity $^{4}, f(T, \phi)$ gravity ${ }^{5}$ and so on.

[^0]
Mathematical Formalism of Teleparallel Gauss Bonnet Gravity:

We consider a flat isotropic and homogeneous Friedmann-Lemaître-Robertson-Walker (FLRW) metric.

$$
\begin{equation*}
d s^{2}=-d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{1}
\end{equation*}
$$

Where $a(t)$ is the scale factor and the tetrad field can be described as follow,

$$
\begin{equation*}
e_{\mu}^{A}=(1, a(t), a(t), a(t)), \tag{2}
\end{equation*}
$$

the tetrad e_{μ}^{A} (and its inverses E_{A}^{μ}) relate to the metric as the fundamental variable of theory through the relations,

$$
\begin{equation*}
g_{\mu \nu}=e_{\mu}^{A} e_{\nu}^{B} \eta_{A B}, \quad \eta_{A B}=E_{A}^{\mu} E_{B}^{\nu} g_{\mu \nu} \tag{3}
\end{equation*}
$$

The tetrads must satisfy orthogonality conditions which take of the form,

$$
\begin{equation*}
e_{\mu}^{A} E_{B}^{\mu}=\delta_{B}^{A}, \quad e_{\mu}^{A} E_{A}^{\nu}=\delta_{\mu}^{\nu} \tag{4}
\end{equation*}
$$

The Weitzenböck connection can be defined as,

$$
\Gamma_{\nu \mu}^{\sigma}:=E_{A}^{\sigma}\left(\partial_{\mu} e_{\nu}^{A}+\omega_{B \mu}^{A} e_{\nu}^{B}\right)
$$

Mathematical Formalism of Teleparallel Gauss Bonnet Gravity:

The torsion scalar can be defined as,

$$
\begin{equation*}
T=\frac{1}{4} T^{\alpha}{ }_{\mu \nu} T_{\alpha}{ }^{\mu \nu}+\frac{1}{2} T^{\alpha}{ }_{\mu \nu} T^{\alpha}{ }_{\nu \mu}-T^{\alpha}{ }_{\mu \alpha} T^{\beta \mu}{ }_{\beta}, \tag{6}
\end{equation*}
$$

The Gauss-Bonnet term, which has been derived in the TG setting to be defined as,

$$
\begin{gather*}
T_{G}=\left(K_{a}{ }^{i}{ }_{e} K_{b}{ }^{e j} K_{c}{ }_{c}{ }_{f} K_{d}{ }^{I I}-2 K_{a}{ }^{i j} K_{b}{ }^{k} K_{c}{ }_{c}{ }^{e}{ }_{f} K_{d}{ }^{f I}+2 K_{a}{ }^{i j} K_{b}{ }^{k}{ }_{e} K_{f}{ }^{e l} K_{d}{ }^{f}{ }_{c}+2 K_{a}{ }^{i j} K_{b}{ }_{e}{ }_{e} K_{c}{ }^{e d}\right) \delta_{i k k k}{ }^{a b d}, \\
T=6 H^{2}, \quad T_{G}=24 H^{2}\left(\dot{H}+H^{2}\right), \tag{8}
\end{gather*}
$$

The action formula can be written as,

$$
\begin{equation*}
\mathcal{S}_{f\left(T, T_{G}\right)}=\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{4} \times e f\left(T, T_{G}\right)+\int \mathrm{d}^{4} \times e \mathcal{L}_{\mathrm{m}}, \tag{9}
\end{equation*}
$$

The Friedmann equations for this set-up are given by ${ }^{6}, 7$.

$$
\begin{array}{r}
f-12 H^{2} f_{T}-T_{G} f_{T_{G}}+24 H^{3} \dot{f}_{T_{G}}=2 \kappa^{2} \rho \\
f-4\left(\dot{H}+3 H^{2}\right) f_{T}-4 H \dot{f}_{T}-T_{G} F_{T_{G}}+\frac{2}{3 H} T_{G} \dot{f}_{T_{G}}+8 H^{2} \dot{f}_{T_{G}}=-2 \kappa^{2} p \tag{11}
\end{array}
$$

[^1]
Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:

- The classical Noether symmetry approach was originally established by Emmy Noether ${ }^{8}$.
- For every continuous symmetry we can find a corresponding conserved quantity, the Noether symmetry allows one to fix physically interesting cosmological models related to the conserved quantities.
- The existence of Noether symmetries allows to reduce dynamics of the system and then to achieve exact solutions.
- Noether symmetries act as a sort of selection rules to obtain viable models in quantum cosmology.
- The Noether symmetry approach in $f\left(T, T_{G}\right)$ gravity was firstly studied in^{9}.

[^2]
Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:

We start with the Euler-Lagrange equations which are given by

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{a}}=\frac{\partial \mathcal{L}}{\partial a}, \quad \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{T}}=\frac{\partial \mathcal{L}}{\partial T}, \quad \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{T}_{G}}=\frac{\partial \mathcal{L}}{\partial T_{T_{G}}}, \tag{12}
\end{equation*}
$$

where the energy condition can be written as

$$
\begin{equation*}
E_{\mathcal{L}}=\frac{\partial \mathcal{L}}{\partial \dot{a}} \dot{a}+\frac{\partial \mathcal{L}}{\partial \dot{T}} \dot{T}+\frac{\partial \mathcal{L}}{\partial \dot{T}_{G}} \dot{T}_{G}-\mathcal{L}, \tag{13}
\end{equation*}
$$

Let us consider the canonical variables a, T and T_{G} in order to derive the $f\left(T, T_{G}\right)$ action through

$$
\begin{equation*}
\mathcal{S}_{f\left(T, T_{G}\right)}=\int \mathcal{L}\left(a, \dot{a}, T, \dot{T}, T_{G}, \dot{T}_{G}\right) d t \tag{14}
\end{equation*}
$$

the action equation in Eq. (9) into its point-like representation using the Lagrange multipliers λ_{1} and λ_{2} as follows

$$
\begin{equation*}
\mathcal{S}_{f\left(T, T_{G}\right)}=2 \pi^{2} \int d t\left\{f\left(T, T_{G}\right) a^{3}-\lambda_{1}\left[T-6\left(\frac{\dot{a}}{a}\right)^{2}\right]-\lambda_{2}\left(T_{G}-24\left[\frac{\dot{a}^{2} \ddot{a}}{a^{3}}\right]\right)\right\} . \tag{15}
\end{equation*}
$$

Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:

Thus, the action in Eq. (15) can be written in following form

$$
\begin{equation*}
\mathcal{S}_{f\left(T, T_{G}\right)}=2 \pi^{2} \int d t\left\{f\left(T, T_{G}\right) a^{3}-a^{3} f_{T}\left[T-6\left(\frac{\dot{a}}{a}\right)^{2}\right]-a^{3} f_{T_{G}}\left(T_{G}-24\left[\frac{\dot{a}^{2} \ddot{a}}{a^{3}}\right]\right)\right\}, \tag{16}
\end{equation*}
$$

where the point-like Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}_{f\left(T, T_{G}\right)}=a^{3}\left[f\left(T, T_{G}\right)-T f_{T}-T_{G} f_{T_{G}}\right]+6 a \dot{a}^{2} f_{T}-8 \dot{a}^{3}{\dot{T_{T}}} . \tag{17}
\end{equation*}
$$

On the other hand, the Euler-Lagrange equations for the variables a, T and T_{G} can be respectively obtained to give the following

$$
\begin{align*}
& 6 \dot{a}^{2} f_{T}+12 a \ddot{a} f_{T}+12 a \dot{a} \dot{f}_{T}-24\left[2 \dot{a} \ddot{a} \dot{f}_{T_{G}}\right.\left.+\dot{a}^{2} \ddot{f}_{T_{G}}\right]-3 a^{2} f\left(T, T_{G}\right) \\
&+3 a^{2} T f_{T}+3 a^{2} T_{G} f_{T_{G}}=0, \tag{18}\\
&\left(-24 \dot{a}^{2} \ddot{a}+a^{3} T_{G}\right) f_{T_{G} T}+\left(a^{3} T-6 a \dot{a}^{2}\right) f_{T T}=0, \tag{19}\\
&\left(-24 \dot{a}^{2} \ddot{a}+a^{3} T_{G}\right) f_{T_{G} T_{G}}+\left(a^{3} T-6 a \dot{a}^{2}\right) f_{T T_{G}}=0 . \tag{20}
\end{align*}
$$

Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:

Now, the energy condition described in Eq. (13) can be associated with the Lagrangian described in Eq. (17) to give

$$
\begin{equation*}
\left(12 a \dot{a} f_{T}-24 \dot{a}^{2} \dot{f}_{T_{G}}\right) \dot{a}-a^{3} f\left(T, T_{G}\right)+a^{3} T_{G} f_{T_{G}}=0 \tag{21}
\end{equation*}
$$

The Lagrangian \mathcal{L} admits the Noether symmetry if its Lie derivative along a vector field X vanishes, meaning that

$$
\begin{equation*}
\mathcal{L}_{X} \mathcal{L}=0 \Longrightarrow X \mathcal{L}=0 \tag{22}
\end{equation*}
$$

The system with Lagrangian $\mathcal{L}=\mathcal{L}(t, q, \dot{q})$, the action is said to invariant under infinitesimal transformations if the Rund-Trautman identity ${ }^{10}$ holds,

$$
\begin{equation*}
\chi^{(1)} \mathcal{L}+\frac{d \xi}{d t} \mathcal{L}=\frac{d g}{d t} \tag{23}
\end{equation*}
$$

where,

$$
\begin{equation*}
\chi^{(1)}=\chi+\left(\dot{\eta}^{i}-\dot{q}^{i} \dot{\xi}\right) \frac{\partial}{\partial \dot{q}^{i}}, \quad q i=a, T, T_{G} \tag{24}
\end{equation*}
$$

Together with the independent variable of cosmic time t, the generator vector can be described as

$$
\chi=\xi\left(t, a, T, T_{G}\right) \partial_{t}+\sum \eta_{q i}\left(t, a, T, T_{G}\right) \partial_{q i} .
$$

[^3]Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:
The system derived from the condition in Eq. (23) consist partial differential equations as,

$$
\begin{align*}
-8 f_{T_{G}, T} \eta_{T, t}-8 \eta_{T_{G}, t} f_{T_{G}, T_{G}}-6 a f_{T} \xi_{, a} & =0 \tag{26}\\
-12 a \xi_{, T}-24 \eta_{a, t} f_{T_{G}, T}+6 a f_{T} \xi_{, T} & =0 \tag{27}\\
-8 f_{T_{G}, T} \eta_{T, a}-8 f_{T_{G}, T_{G}} \eta_{T_{G}, a} & =0 \tag{28}\\
24 \xi_{, T} f_{T_{G}, T_{G}}+24 \xi_{, T_{G}} f_{T_{G}, T} & =0 \tag{29}\\
-24 \eta_{a, T} f_{T_{G}, T_{G}}-24 \eta_{a, T_{G}} f_{T_{G}, T} & =0 \tag{30}\\
-6 a f_{T} \xi_{, T_{G}}-24 \eta_{a, t} f_{T_{G}, T_{G}} & =0 \tag{31}\\
12 a f_{T} \eta_{a, T} & =0 \tag{32}\\
12 a f_{T} \eta_{a, T_{G}} & =0 \tag{33}\\
-24 \eta_{a, T} f_{T_{G}, T} & =0 \tag{34}\\
-24 \eta_{a, T_{G}} f_{T_{G}, T_{G}} & =0 \tag{35}\\
24 \xi_{, T_{G}} f_{T_{G}, T_{G}} & =0 \tag{36}\\
24 \xi_{, a} f_{T_{G}, T} & =0 \tag{37}\\
24 \xi_{, a} f_{T_{G}, T_{G}} & =0 \tag{38}\\
24 \xi_{, T} f_{T_{G}, T} & =0 \tag{39}\\
\eta_{a, t} 12 a f_{T}+a^{3} f \xi_{, a}-a^{3} T f_{T} \xi_{, a}-a^{3} T_{G} f_{T_{G}} \xi_{, a} & =g, a \\
a^{3} f \xi, T-a^{3} T f_{T} \xi_{, T}-a^{3} T_{G} f_{T_{G}} \xi, T & =g, T
\end{align*}
$$

Noether Symmetry Approach in $f\left(T, T_{G}\right)$ Gravity:

$$
\begin{array}{r}
a^{3} f \xi_{, a}-a^{3} T f_{T} \xi_{, T_{G}}-a^{3} T_{G} f_{T_{G}} \xi_{, T_{G}}=g, T_{G} \\
\eta_{a} 6 f_{T}+\eta_{T} 6 a f_{T, T}+\eta_{T_{G}} 6 a f_{T, T_{G}}-6 a f_{T} \xi_{, t}+12 a f_{T} \eta_{a, a}=0 \\
-\eta_{T} 8 f_{T_{G}, T, T_{G}}-\eta_{T_{G}} 8 f_{T_{G}, T_{G}, T_{G}}-24 \eta_{a, a} f_{T_{G}, T_{G}}+24 \xi_{, t} f_{T_{G}, T_{G}}-8 f_{T_{G}, T} \eta_{T, T_{G}} \\
-8 f_{T_{G}, T_{G}} \eta_{T_{G}, T_{G}}=0 \\
(43) \\
-\eta_{T} 8 f_{T_{G}, T, T}-\eta_{T_{G}} 8 f_{T_{G}, T_{G}, T}-24 \eta_{a, a} f_{T_{G}, T}+24 \xi_{, t} f_{T_{G}, T}-8 f_{T_{G}, T} \eta_{T, T} \tag{45}\\
-8 f_{T_{G}, T_{G}} \eta_{T_{G}, T}=0
\end{array}
$$

$$
3 a^{2} \eta_{a} f-3 a^{2} \eta_{a} T f_{T}-\eta_{a} 3 a^{2} T_{G} f_{T_{G}}-\eta_{T} a^{3} T f_{T T}-\eta_{T} a^{3} T_{G} f_{T_{G}, T}+a^{3} f \xi_{, t}-a^{3} T f_{T} \xi_{, t}-
$$

$$
\begin{equation*}
a^{3} T f_{T, T_{G}} \eta_{T_{G}}-a^{3} T_{G} f_{T_{G}} \xi_{, t}-\eta_{T_{G}} a^{3} T_{G} f_{T_{G}, T_{G}}=g, t \tag{46}
\end{equation*}
$$

The case $f\left(T, T_{G}\right)=b_{0} T_{G}^{k}+t_{0} T^{m}$

In this case, we substitute this form of $f\left(T, T_{G}\right)^{11}$ in the system (26-46) for the particular case $k=1$ and arbitrary m. The Noether symmetry vector assumes the form as follow,

$$
\begin{equation*}
\chi=\left(\xi=\tau_{1}, \quad \eta_{a}=\alpha_{0} a^{1-\frac{3}{2 m}}, \quad \eta_{T_{G}}=\eta_{T_{G}}\left(t, a, T, T_{G}\right), \quad \eta_{T}=-\frac{3 \alpha_{0} T_{a}-\frac{3}{2 m}}{m}, \quad g=\tau_{2}\right) \tag{47}
\end{equation*}
$$

The pointlike Lagrangian presented in Eq. (17) takes the form as,

$$
\begin{equation*}
\mathcal{L}=a^{3}(1-m) T^{m} t_{0}+6 a \dot{a}^{2} t_{0} m T^{m-1} . \tag{48}
\end{equation*}
$$

The Euler-Lagrange equation for T_{G} may give the Lagrange multiplier T_{G} and the Euler-Lagrange equation for variable a in Eq. (12) and the energy condition equation in Eq.(13) respectively can be written as,
$12 t_{0} m\left(\dot{a}^{2} T^{m-1}+a \ddot{a} T^{m-1}+a \dot{a}(m-1) T^{m-2} \dot{T}\right)-3 a^{2}(1-m) T^{m} t_{0}-6 \dot{a}^{2} t_{0} m T^{m-1}=0$,

[^4]Using Eq. (8), the above equations in Eqs. (49-50) can be reformulated to take the form

$$
\begin{align*}
6^{m}(2 m-1) t_{0}\left(\frac{\dot{a}^{2}}{a^{2}}\right)^{m-1}\left((3-2 m) \dot{a}^{2}+2 m a \ddot{a}\right) & =0 \tag{51}\\
6^{m}(2 m-1) t_{0} a^{3}\left(\frac{\dot{a}^{2}}{a^{2}}\right)^{m} & =0 \tag{52}
\end{align*}
$$

The differential equation Eq. (51) admit the following solution

$$
\begin{equation*}
a(t)=\tilde{c}_{2}\left(3 t-2 \tilde{c}_{1} m\right)^{\frac{2 m}{3}}, \quad \text { for } \quad m \neq \frac{1}{2} \tag{53}
\end{equation*}
$$

where $\tilde{c}_{1}, \tilde{c}_{2}$ are the integrating constants.
The deceleration parameter takes the form $-1+\frac{3}{2 m}$.
Hence this exact solution can explain the accelerating universe for the parameter m , within the range $m<0$ or $m>\frac{3}{2}$.
Moreover, these cosmology expressions admit de-Sitter solution as follow,

$$
\begin{equation*}
a(t)=e^{s t}, \quad \text { where } \quad\left(s \neq 0 \wedge\left(m=\frac{1}{2} \vee t_{0}=0\right)\right) \vee(\Re(m)>0 \wedge s=0) . \tag{54}
\end{equation*}
$$

Here s, t_{0} are the real constants and $\Re(m)$ represents real part of m.

The case $f\left(T, T_{G}\right)=-T+j e^{m T_{G}}$
In this form of $f\left(T, T_{G}\right)^{12}$, the nontrivial Noether vector takes the form,

$$
\begin{equation*}
\chi=\left(\xi=k_{1} t+k_{2}, \eta_{a}=\frac{a k_{1}}{3}, \eta_{T_{G}}=\frac{2 k_{1}}{m}+c_{1} e^{-m T_{G}}, \eta_{T}=\eta_{T}\left(t, a, T, T_{G}\right), g=\tau_{2}\right) . \tag{55}
\end{equation*}
$$

In this case the Lagrangian Eq. (17) takes the form

$$
\begin{equation*}
\mathcal{L}=-6 a \dot{a}^{2}+j e^{m T_{G}}\left(a^{3}-T_{G} a^{3} m-8 \dot{a}^{3} \dot{T}_{G} m^{2}\right), \tag{56}
\end{equation*}
$$

Using the Euler-Lagrange equations in Eq. (12) for the variable a and the energy condition in Eq. (13), respectively give,

$$
\begin{equation*}
-6 \dot{a}^{2}-12 a \ddot{a}-24 j m^{2} e^{m T_{G}}\left(m \dot{T}_{G} \dot{a}^{2} \dot{T}_{G}+2 \dot{a} \ddot{a} \dot{T}_{G}+\dot{a}^{2} \ddot{T}_{G}\right)-j e^{m T_{G}}\left(3 a^{2}-3 m a^{2} T_{G}\right)=0, \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
-6 a \dot{a}^{2}-j e^{m T_{G}}\left(24 \dot{a}^{3} \dot{T}_{G} m^{2}+a^{3}-T_{G} a^{3} m\right)=0 . \tag{58}
\end{equation*}
$$

The cosmological solution in this case can then be obtained to give exact solution as,

$$
a(t)=e^{\lambda t} \quad \text { where } \quad 24 \lambda^{4} m-1 \neq 0 \quad \text { and } \quad j=\frac{6 \lambda^{2} e^{-24 \lambda^{4} m}}{24 \lambda^{4} m-1},
$$

${ }^{12}$ B. Mirza and F. Oboudiat, J. Cosmo. Astropar. Phys., 2017, 011 (2017).

The case $f\left(T, T_{G}\right)=-T+j e^{m \sqrt{T_{G}}}$
In this form of $f\left(T, T_{G}\right)^{13}$, the coefficients of Noether vector takes the form as follow,

$$
\begin{gathered}
\chi=\left(\xi=k_{1} t+k_{2}, \quad g=\tau_{2}, \quad \eta_{T_{G}}=-\frac{4 k_{1} T_{G}}{1-m \sqrt{T_{G}}}+\frac{c_{1}\left(T_{G}\right)^{3 / 2} e^{-m \sqrt{T_{G}}}}{1-m \sqrt{T_{G}}},\right. \\
\left.\eta_{T}=\eta_{T}\left(t, a, T, T_{G}\right), \quad \eta_{a}=\frac{a k_{1}}{3}\right),
\end{gathered}
$$

In this case the Lagrangian Eq.(17) takes the form as follow,

$$
\begin{equation*}
\mathcal{L}=-6 a \dot{a}^{2}+e^{m \sqrt{T_{G}}}\left(a^{3} j-\frac{\sqrt{T_{G}} j m a^{3}}{2}+\frac{2 \dot{a}^{3} \dot{T}_{G} j m}{\left(T_{G}\right)^{\frac{3}{2}}}-\frac{2(\dot{a})^{3} j m^{2} \dot{T}_{G}}{T_{G}}\right), \tag{60}
\end{equation*}
$$

The Euler-Lagrange equations from Eq. (12) and Energy condition from Eq. (13) respectively can be expressed as

$$
\begin{array}{r}
\mu\left(1-\sqrt{T_{G}} m\right) e^{m \sqrt{T_{G}}}+e^{m \sqrt{T_{G}}}\left(-\frac{3 \dot{a}^{2}\left(\dot{T}_{G}\right)^{2} j m^{2}}{\left(T_{G}\right)^{2}}-3 a^{2} j+\frac{3 a^{2} \sqrt{T_{G}} j m}{2}\right) \\
-6 \dot{a}^{2}-12 a \ddot{a}=0 . \tag{61}
\end{array}
$$

${ }^{13}$ E. V. Linder, Phys.Rev.D, 201782, 109902 (2010).
where $\mu=\left(\left(T_{G}\right)^{\frac{-3}{2}}\left(\frac{3 m^{2} j\left(\dot{T}_{G}\right)^{2} \dot{a}^{2}}{\sqrt{T_{G}}}+12 \dot{a} a \ddot{a} \dot{T}_{G} j m+6 \dot{a}^{2} \ddot{T}_{G} j m\right)-9 \dot{a}^{2}\left(\dot{T}_{G}\right)^{2} j m\left(T_{G}\right)^{\frac{-5}{2}}\right)$,

$$
\begin{equation*}
-6 a \dot{a}^{2}+e^{m \sqrt{T_{G}}}\left(\frac{6 \dot{a}^{3} j m \dot{T}_{G}}{T_{G}}\left(\frac{1-m \sqrt{T_{G}}}{\sqrt{T_{G}}}\right)-a^{3} j+\frac{\sqrt{T_{G}} j m a^{3}}{2}\right)=0 . \tag{62}
\end{equation*}
$$

The cosmological solution in this case can be obtained as follow,

$$
\begin{equation*}
a(t)=e^{\zeta t} \quad \text { where } \quad \sqrt{6}-6 \zeta^{2} m \neq 0 \quad \text { and } \quad j=-\frac{6 \sqrt{6} \zeta^{2} e^{-2 \sqrt{6} \zeta^{2} m}}{\sqrt{6}-6 \zeta^{2} m} \tag{63}
\end{equation*}
$$

Outcome of Study:

- In this work, we explore $f\left(T, T_{G}\right)$ gravity through the prism of Noether symmetries.
- We consider the Rund-Trautman identity presented in Eq.(23) by which we have obtained the system of differential equations.
- For the case $f\left(T, T_{G}\right)=b_{0} T_{G}+t_{0} T^{m}$, the non-trivial Noether vector form has been obtained and the exact solutions has been discussed.
- Similarly the other two cases has been studied to analyse the systematic approach to find the exact solutions.
- The corresponding deceleration parameter has been obtained for the exact solutions which will help to study the late time cosmic acceleration phenomena.

Publication Details: S.A. Kadam, B. Mishra, Jackson Levi Said:" Noether symmetries in $f\left(T, T_{G}\right)$ Cosmology", Physica Scripta, 98, 045017, 2023.

[^0]: ${ }^{1}$ H. Weyl, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.),1918, 465 (1918).
 ${ }^{2}$ N. Tamanini, C. G. Bohmer, Phys. Rev. D, 86, 044009 (2012).
 ${ }^{3}$ S. Bahamonde, C. G. Bohmer, and M. Wright, Phys. Rev. D, 92,104042 (2015).
 ${ }^{4}$ G. Kofinas, E. N. Saridakis, Phys. Rev. D90, 084045 (2014).
 ${ }^{5}$ M. Gonzalez-Espinoza, G. Otalora, Eur. Phys. J. C., 81, 480 (2021).

[^1]: ${ }^{6}$ S. Bahamonde, C. G. Bohmer, Eur. Phys. J. C, 76, 578 (2016).
 ${ }^{7}$ G. Kofinas, E. N. Saridakis, Phys. Rev. D, 90, 084045 (2014).

[^2]: ${ }^{8}$ E. Noether, Transp. Theory Statist. Phys, 90, 186 (1971).
 ${ }^{9}$ S. Capozziello, M. D. Laurentis, K. F. Dialektopoulos, Eur. Phys. J. C, 76, 629 (2016).

[^3]: ${ }^{10}$ S. Basilakos, M. Tsamparlis, and A. Paliathanasis, Phys. Rev. D, 83, 103512 (2011).

[^4]: ${ }^{11}$ S. Capozziello, M. D. Laurentis, K. F. Dialektopoulos, Eur. Phys. J. C, 76, 629 (2016).

