the Cosmological Low-Speed Collider

Sébastien Renaux-Petel CNRS - Institut d'Astrophysique de Paris

Cosmology from Home July 2023

Equilateral non-Gaussianities, what is next? Cosmological correlators beyond locality, weak mixing and parity

European Research Council Established by the European Commission

I. General context and Main Ideas

II. More details

Outline

I. General context and Main Ideas

Time

A detective's work

Observations

Statistical properties

$$\mathbb{P}\left(\frac{\delta\rho}{\rho}, h_{ij}\right)$$

"Data! data! data!"

Higher-order correlators: beyond free fields

Cosmology

Particle physics

Additional difficulty compared to particle physics: everything is, a priori, time-dependent

Primordial non-Gaussianities

measure of interactions

Goal: establish a standard model of inflation

Identify degrees of freedom, mass, dispersion relation, spin, interactions

Bispectrum

$\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \rangle = (2\pi)^3 \delta^{(3)} (\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) B_{\zeta} (k_1, k_2, k_3)$

Homogeneity

$$B_{\zeta} \equiv (2\pi)^4 \, \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2} A_s^2$$

Amplitude $S \sim f_{\rm NL}$

Scale-dependence (overall size)

Shape dependence (configuration of triangles)

 $m{k}_2$

 $oldsymbol{k}_1$

Prospects

Huge efforts with CMB-S4 & large-scale structure surveys (scale-dependent bias, EFT of LSS, position space maps, simulation based inference etc)

Long-term: 21 cm radio-astronomy from the far side of the moon! (dark ages)

Is the dictionary complete?!

- Theorists' task
- **Building dictionary**
- Identifying targets worth measuring

Interesting targets not yet identified?!

Idea 1: Detection of equilateral non-Gaussianities, what is the next target?

New discovery channel of heavy fields with $m < H/c_s$

 $D_{\mathrm{F}}(\boldsymbol{x},t;\boldsymbol{y},t') \rightarrow$

Feynmann propagator

instantaneous propagation of supersonic field

Idea 2: Non-local EFT

Low speed of sound

Single-field non-local EFT

$$\delta(t-t') \frac{e^{-m|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \checkmark$$

spatial non-locality (mild form, Yukawa-type)

Idea 3: Parity violation from emergent non-locality

Massive spin-l with different helicities

 $\sigma_+ \neq \sigma_-$

Jazayeri, Renaux-Petel, Tong, Werth, Zhu [2023]

Single-field non-local EFT with parity-odd 4-pt

Low-speed collider resonance + new type of oscillatory signal

II. More details

Effective Field Theory of Inflationary Fluctuations

Formulation of theories straight at the level of fluctuations

motivates (informs

Source of inflation

Systematic, powerful and direct link with observations

Preferred space-like foliation (existence of clock) breaks time reparametrization invariance

Guaranteed: Goldstone boson

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore [2008]

Equilateral/orthogonal non-Gaussianities

Imprints of Massive Field?

Low-speed limit: transparent physical understanding with non-local single-field EFT

$$(\partial_t^2 \Rightarrow 3H\partial_t - \partial_i^2/a^2 + m^2)\sigma = J(\pi_c)$$
$$\sim H^2 \sim \frac{k^2}{a^2} \sim \frac{H^2}{c_s^2}$$

Low sound speed

$$S_{\text{eff}} = \int d^4x \sqrt{-g} \left(\frac{1}{2} \dot{\pi}_c \left[1 + \rho^2 \mathcal{D}^{-1} \right] \dot{\pi}_c - \frac{c_s^2}{2} (\tilde{\partial}_i \pi_c)^2 - \lambda_1 \dot{\pi}_c (\tilde{\partial}_i \pi_c)^2 - \lambda_2 \dot{\pi}_c^3 \right) \\ - \frac{\rho}{\Lambda_1} (\tilde{\partial}_i \pi_c)^2 \mathcal{D}^{-1} \dot{\pi}_c - \frac{\rho}{\Lambda_2} \dot{\pi}_c^2 \mathcal{D}^{-1} \dot{\pi}_c - \lambda \rho^2 \dot{\pi}_c \left[\mathcal{D}^{-1} \dot{\pi}_c \right]^2 - \mu \rho^3 \left[\mathcal{D}^{-1} \dot{\pi}_c \right]^3 \right)$$

Interactions delocalized in time

All interactions contact + simple mode functions

$$S^{\alpha}(k_1, k_2, k_3) = S^{\text{eq}}(k_1, k_2, k_3) + \frac{1}{3} \frac{k_1^2}{k_2 k_3} \left[1 + \left(\alpha \frac{k_1}{k_2 k_3} \right) \right]$$

Weak mixing

Jazayeri, Renaux-Petel [2022] Jazayeri, Renaux-Petel, Werth [2023]

Simple analytical results for all interactions

Simple factorizable template for data analysis

Resonance comparable to self-interactions when pushing $\rho \sim m$

Non-perturbative treatment of mixing required

Effective mass regime: strong mixing without strong coupling

unmodified π interacting with σ with effective mass $m_{
m eff}^2 = m^2 + \rho^2$ Main effect:

Analytical results and template qualitatively hold with $\alpha \rightarrow \alpha_{\text{eff}} = c_s \frac{m_{\text{eff}}}{H}$

Jazayeri, Renaux-Petel, Werth [2023]

Self-interactions

Interactions with heavy field

Total shape

Parity violation for density fluctuations

 \mathbf{r}_2

Credit: Philcox, 2206.04227

Sum : parity-even 4-pt

Difference : parity-odd part

Tetrahedron and mirror image not related by rotation (contrary to 2 and 3 point functions)

First signal of parity violation: 4 pt function

parity-even: real

Fourier space

parity-odd: purely imaginary

Origin of parity violation: spin-1 with chemical potential

Massive spin-l with different helicities

$$\sigma_+ \neq \sigma_-$$

$$S_{\sigma} = \int d^{4}x \sqrt{-g} \left[-\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2}m^{2}\sigma_{\mu}^{2} + \frac{\kappa t}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}\right]$$
Proca + Chern-Simo
longitudinal mode
irrelevant for parity violation
8 dofs σ_{i}

transverse modes, helicity ± 1

$$_{\pm,k}' + \left[k^2 \pm 2ak\kappa + a^2m^2\right]\sigma_{\pm,k} = 0$$

Parity violation like in axion-gauge field (but massive field here)

$$S = \int dt \, d^3x \, a^3 \left[\frac{1}{2} \dot{\pi}_c^2 - \frac{c_s^2}{2} \frac{(\partial_i \pi_c)^2}{a^2} - \frac{1}{2} \frac{1}{2} \dot{\pi}_c^2 - \frac{1}{2} \frac{(\partial_i \pi_c)^2}{a^2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \dot{\pi}_c^2 - \frac{1}{2} \frac{1}{2} \frac{1}{2} \dot{\pi}_c^2 - \frac{1}{2} \frac{1}{2} \frac{1}{2} \dot{\pi}_c^2 - \frac{1}{2} \frac{1}$$

$$\mathcal{D}_{ij} \equiv \left(-\frac{\partial_i^2}{a^2} + m^2\right) \delta_{ij}(-\frac{\partial_i^2}{a^2} + m^2) \delta_{ij}$$

Low sound speed

$$S_{\rm EFT} = \int dt \, d^3x \, a^3 \left[\frac{1}{2} \dot{\pi}_c^2 - \frac{c_s^2}{2} \frac{(\partial_i \pi_c)^2}{a^2} + \frac{1}{2a^2} J_i(\pi_c)^2 \right]$$

Leading-order EFT Next-to-Leading-order EFT

Non-local single-field EFT

 $\frac{1}{2a^2}\sigma_i\left[\delta_{ij}(\partial_t^2 + H\partial_t) + \mathcal{D}_{ij}\right]\sigma_j + \frac{\sigma_i}{a^2}J_i(\pi_c)$ spin-l sector

coupling

 $J_i(\pi_c) \sim \pi_c \partial_i \pi_c$

parity-odd

 $\mathcal{D}_{ij}^{-1} J_j(\pi_c) - \frac{1}{2a^2} J_i(\pi_c) \mathcal{D}_{il}^{-1}(\partial_t^2 + H\partial_t) \mathcal{D}_{lj}^{-1} J_j(\pi_c) + \dots$

Parity violation from emergent non-locality

Jazayeri, Renaux-Petel, Tong, Werth, Zhu [2023]

Main features

Conclusions

• **Beyond local EFT**: interesting by itself, bottom-up constructions?

• Non-local single-field EFT with large parity-odd 4 pt and new signatures

• Striking non-Gaussian signature in motivated minimal framework has been missed: Cosmological Low-Speed Collider. Resonance as discovery channel of heavy fields

• New shape, simple template, interesting strong mixing regime with large amplitude

Jazayeri, Renaux-Petel 2205.10340

Bootstrap Weak mixing Single-field non-local EFT

