Probing Modified Gravity Using Data From Large Scale Structure Surveys

Sankarshana Srinivasan

Jodrell Bank Centre for Astrophysics University of Manchester (Moving to LMU Munich as a Humboldt Fellow in Oct.)

June 23, 2023

Plan

1 Introduction

Background and Motivation

2 Modified Gravity

- Main challenge: Describing gravity on all scales
- *N*-body simulations: Impact of MG on Large Scale Structure
- Results: Computing observables from our simulations
- Comparing fitting functions to simulation results
- Computing weak-lensing observables
- **3** Results from ongoing work: Fitting function for c(M)

Conclusion

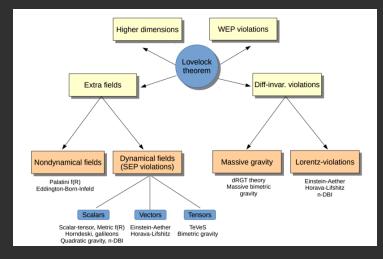
Problems with ΛCDM

Some major issues that (should) keep cosmologists up at night:

The unknown nature of the main ingredients of the model, dark matter and dark energy.

Problems with ΛCDM

Some major issues that (should) keep cosmologists up at night:


- The unknown nature of the main ingredients of the model, dark matter and dark energy.
- Validity of general relativity (GR) assumed over a huge range of scales where it hasn't been tested.

Why modify gravity?

- The validity of GR as theory of gravity crucial ingredient in all evidence for existence of dark sector.
- Modify equations to naturally explain the effects of dark sector.

	GW Events		
Strength of gravity	Local Tests	Non-Linear??	$\Lambda { m CDM}$ Linear
	< 1 pc	Scale	→ >30 Mpc

Vast model space

Figure courtesy Andrius Tamosiunas.

S. Srinivasan	(JBCA)
---------------	--------

Parameterising Modified Gravity: Non-Linear Scales?

- Describe a large class of models using as few parameters as possible.
- Existing parameterisations [see Battye et al (2013), Gleyzes et al (2015)] ¹ are designed and validated only on linear scales, i.e., on scales where $\delta \ll 1$.
- Future experiments will generate huge amount of data on non-linear scales.

 $^1 \mbox{This}$ list is by no means complete, this work has been going on for more than 2 decades now

Solution: Newtonian Approximation

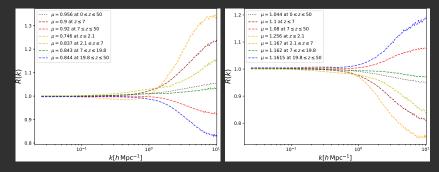
- 'Newtonian Limit': limiting case where corrections to weak-field, low-velocity regime are negligible.
- Thomas (2020) (2004.13051) showed that it is possible to describe a large class of models using the Post-Friedmann formalism to obtain

$$\frac{1}{c^2} k^2 \tilde{\phi}_{\rm P} = -\frac{1}{c^2} 4\pi a^2 \bar{\rho} G_{\rm N} \mu(a,k) \tilde{\Delta}, \qquad (1)$$

$$\tilde{\psi}_{\rm P} = \eta(a,k) \tilde{\phi}_{\rm P}, \qquad (2)$$

Note that Δ , the gauge-invariant density contrast need not be small, so these equations are valid on **all cosmological scales** relevant for N-body simulations.

Binning μ in redshift


• $\mu(z)$ modelled as a step function, where in each simulation only one bin is 'switched on'.

Number of bins	Redshift	μ	
1	0-50	1.044	0.956
2	0-7.0	1.100	0.900
	7.0-50	1.080	0.920
4	0-2.1	1.256	0.746
	2.1 - 7.0	1.167	0.837
	7.0-19.2	1.162	0.842
	19.2-50.0	1.161	0.843

Hence Binning of μ adopted in Srinivasan et. al. (2021) (2103.05051), where bin width is varied to keep D(z = 0).

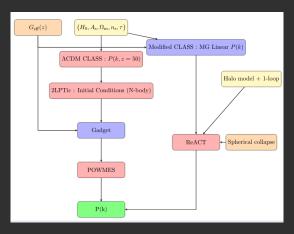
Impact of μ on P(k)

"Split" behaviour on small (non-linear) scales, where the power depends on the range of redshifts over which the modified gravity effects were switched on

Where R(k) is the ratio relative to re-scaled Λ CDM power spectrum to match linear growth at z = 0.

Comparison of fitting functions

ReACT [Cataneo et al (2018), Bose et al 2020]: Halo model + Spherical collapse



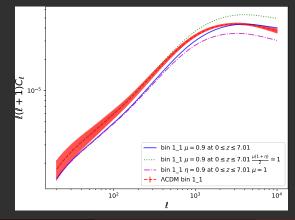
 $k_{\rm fail}\equiv k$ at which R(k) predicted by fitting function deviates from R(k) calculated from simulations

S. Srinivasan (JBCA)

Euclid Pipeline Results

Euclid $\mu - \sigma$ parameterisation forecast paper with current pipeline

Computing the weak-lensing convergence power spectrum


The weak-lensing convergence power spectrum can be computed from the matter power spectrum and the modified gravity parameters

$$P_{\kappa}(\ell) \propto \int_0^{\chi_{\max}} W(\chi) \frac{\mu^2 (1+\eta)^2}{4} P_{\delta}(\ell/\chi) \,, \tag{3}$$

where P_{δ} is the matter power spectrum, η is the second modified gravity parameter that affects the photon geodesics and χ is the comoving distance to the source along the line of sight.

How important are non-linear scales?

- Future missions will rely on their modelling of non-linear scales to maximise their constraining power.
- Degeneracies between modified gravity models can be broken by explicitly including non-linear scales in the analysis.

Results from ongoing work: Fitting function for c(M)

Impact of μ on P(k)

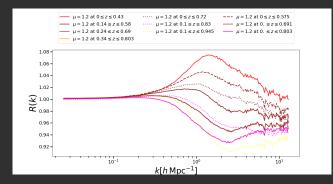
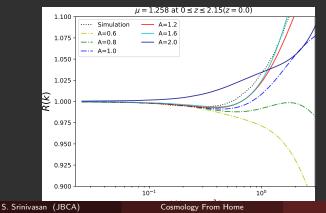



Figure. The power spectrum from the simulations with the μ modified in the redshift range containing the transition from matter-domination to dark energy domination.

A better fit?

- Modifying gravity will modify halo density profiles.
- The concentration c scales with halo mass as a weak negative power law ($\alpha 0.13$).
- Modifying c(M) relation in ReACT leads to a better fit to P(k) in simulation(s)

Results from ongoing work

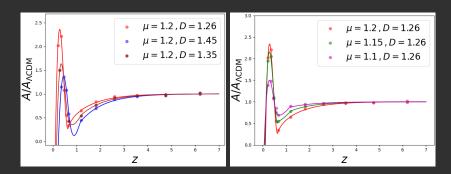
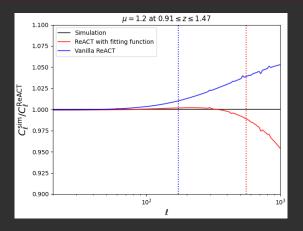
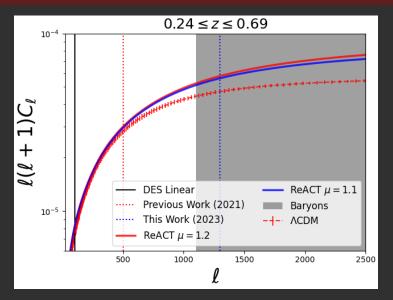



Figure The variation in fitting parameters is consistent across the (μ, D) parameter space probed in our simulations (Paper to be submitted this month!).


Results from ongoing work: Fitting function for c(M)

Results from ongoing work

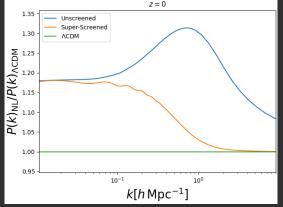
from the weak-lensing convergence power spectrum compared to simulations from the the standard implementation of ReACT and with our fitting function implemented. Vertical lines correspond to 1% disagreement. Results from ongoing work: Fitting function for c(M)

Results from ongoing Work

Future Directions

- Release of ReACT with binned fitting function as a publicly available tool -> Rubin Forecast with Dan Thomas, Agnes Ferte
- k-cut cosmic shear (Peter Taylor)
- Speeding up simulations with COLA (allows building of emulators, faster exploration of wider parameter space)
- Measure the density profiles in halos (possible splashback signature?)

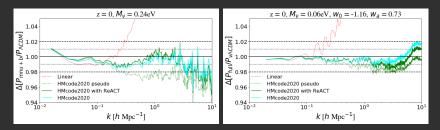
Summary


Most important results:

- Important to parameterise models on non-linear scales to take advantage of bulk of data produced by future galaxy surveys.
- We also showed that computing observables from our model-independent simulations allows exploration of full parameter space and degeneracy breaking.
- Goal: Validate ReACT, implement c(M) modification and perform non-linear model-independent forecasts.

Euclid Pipeline Results

Pipeline applied to so-called late time parametrisation, given by


$$\mu(z) = 1 + E_{11}\Omega_{\Lambda}(z) \tag{4}$$

Two extreme regimes identified: Super-screened and and Un-screened.

BWAB (But What About Baryons?)

Bose et al (2021) releases an update to the ReACT code that incorporated Baryonic feedback (fit from Mead et al (2021))

