JOINT RECONSTRUCTIONS OF GROWTH AND EXPANSION HISTORIES FROM STAGE-IV SURVEYS

Rodrigo CALDERÓN

July 2023 - Cosmology From Home

Postdoc at the Korea Astronomy and Space Science Institute (KASI)

Based on: Phys. Rev. D (2022) 8, 083513 and 2301.00640 (To appear in PRD)

In Collab. with: B. L'Huillier, D. Polarski, A. Shafieloo, A. A. Starobinsky

THE CONCORDANCE MODEL AND ITS LIMITATIONS

[Ezquiaga & Zumalacárregui (2018)]

Shortcomings:

- $\cdot \;$ Smallness of $\Lambda \; (>0)$
- Dark Matter: Cold/Warm, (Self) Interacting, PBH
- \cdot H_0/S_8 -tensions
- Small-scale Issues: Core-Cusp, Satellite

Solutions:

- · Systematics?
- · New Physics?
- · Both?

"Model-independent" approach

THE SURVEY: DESI

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Figure: Dark Energy Spectroscopic Instrument (DESI)

- Large-Scale Structure survey @ Mayall (4m) Telescope (Kitt-Peak, Arizona)
- $\cdot\,$ Observe $\sim 30~{\rm M}$ galaxies (obtain accurate redshift estimates)
- · Accurate distance estimations!
- $\cdot\,$ Probe the last $\sim 11~{\rm M}$ years of the growth of structure and expansion history (DM \rightarrow DE domination)

METHOD: GAUSSIAN PROCESS

"A collection of random (stochastic) variables, any finite number of which follows a (multivariate) Gaussian distribution..."

"A collection of random (stochastic) variables, any finite number of which follows a (multivariate) Gaussian distribution..."

Sampling directly in the space of (continuous) functions!

$$y(x) \sim \mathcal{GP}(\mu = 0, k(\sigma_f = 0.5, \ell_f = 0.3))$$

$y(x) \sim \mathcal{GP}(\mu = 0, k(\sigma_f, \ell_f))$

METHOD: ANALYSIS

· (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- $\cdot\,$ The Data:

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- \cdot The Data:
 - $\cdot\,$ Baryon Acoustic Oscillations (BAO) DESI ($14 K \, deg^2)$ survey :

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- \cdot The Data:
 - $\cdot~$ Baryon Acoustic Oscillations (BAO) DESI $(14 K \, \rm deg^2)$ survey :
 - \cdot Transversal : $d_A(z)/r_s(z_d)$ r_s : "sound horizon"

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- $\cdot\,$ The Data:
 - $\cdot~$ Baryon Acoustic Oscillations (BAO) DESI $(14 K \, \rm deg^2)$ survey :
 - \cdot Transversal : $\frac{d_A(z)}{r_s(z_d)}$ r_s : "sound horizon"
 - · Radial : $H(z)r_s(z_d)$

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- · The Data:
 - $\cdot\,$ Baryon Acoustic Oscillations (BAO) DESI $(14 K \, deg^2)$ survey :
 - · Transversal : $d_A(z)/r_s(z_d)$ r_s : "sound horizon"
 - Radial : $H(z)r_s(z_d)$
 - $\cdot\,$ Redshift-Space Distortions (RSD) DESI $(14 {\rm K\,deg^2})$ survey :

$$\begin{split} f\sigma_8(z) &\equiv f(z)\,\delta(z)\,\frac{\sigma_{8,0}}{\delta(z=0)} \ , \quad \sigma_{8,0}^{\rm fid} = 0.81. \\ \delta &\equiv \frac{\rho(x,t) - \bar{\rho}}{\bar{\rho}} \ , \ f \equiv \frac{\delta\prime}{\delta} \end{split}$$

- · (Flat) FLRW metric + Matter Dominated (EdS) Universe at high-z.
- · The Data:
 - $\cdot\,$ Baryon Acoustic Oscillations (BAO) DESI ($14 {\rm K \, deg^2})$ survey :
 - \cdot Transversal : $d_A(z)/r_s(z_d)$ r_s : "sound horizon"
 - Radial : $H(z)r_s(z_d)$
 - $\cdot\,$ Redshift-Space Distortions (RSD) DESI $(14 {\rm K \, deg}^2)$ survey :

$$\begin{split} f\sigma_8(z) &\equiv f(z)\,\delta(z)\,\frac{\sigma_{8,0}}{\delta(z=0)} \ , \quad \sigma_{8,0}^{\rm fid} = 0.81. \\ \delta &\equiv \frac{\rho(x,t) - \bar{\rho}}{\bar{\rho}} \ , \ f \equiv \frac{\delta\prime}{\delta} \end{split}$$

· Jointly reconstruct Growth and Expansion histories

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G_{\rm eff}(z) \,\rho \,\delta$$

OUR APPROACH: FORWARD MODELING

Model
$$f_{\text{DE}} \equiv \frac{\rho_{\text{DE}}(z)}{\rho_{\text{DE},0}} \sim \mathcal{GP}(\mu = 1, K(\sigma_f, \ell_f))$$

Figure: Schematic representation of our reconstruction method

 \rightarrow Sample $\theta = \{\Omega_m, \sigma_8, \sigma_f, \ell_f\}$ using MCMC methods! $\chi^2_{tot} = \chi^2_{SN} + \chi^2_{BAO} + \chi^2_{RSD}$

RESULTS: GR

RECONSTRUCTING $f_{\mathrm{d}e}(z)$

$$h^{2}(z) = \Omega_{m,0}(1+z)^{3} + (1-\Omega_{m,0}) \cdot f_{\text{DE}}(z)$$
$$f_{\text{DE}} \sim \mathcal{GP}(\mu = 1, K(\sigma_{f}, \ell_{f}))$$

Minimal Assumptions:

- $f_{DE} \equiv DE$ +any additional (exotic) component!
- · (Flat) FLRW + EdS (+ GR)
- \longrightarrow With given h(z), can solve for the growth-rate $f\sigma_8$:

$$f' + \left(f + 2 + \frac{h'}{h}\right)f - \frac{3}{2}\Omega_m = 0$$

$$f \equiv \delta' / \delta, \ \prime \equiv \frac{d}{d \ln a}$$

Figure: Samples of f_{DE} and their likelihood to DESI+Roman-like (mock) data

RECONSTRUCTING FIDUCIAL COSMOLOGIES

Figure: Reconstruction of <u>3 different</u> fiducial DE models (at 95% CL) using SN+BAO+RSD forecasted (Stage-IV) data

BEYOND GENERAL RELATIVITY

Reconstructing $\mu(z)$

$$-\frac{k^2}{a^2}\Phi = 4\pi G_{\rm eff}(z,k)\delta\rho_m$$

We model $G_{\rm eff}(z)$ as a GP centered around Newton's constant G , such that $\mu(z)\equiv\,G_{\rm eff}/\,G$

$$\mu(z; \sigma_f, \ell_f, z_c) = \begin{cases} \mathcal{GP}(\bar{f} = 1, k(\sigma_f, \ell_f)), & \text{for } z < z_c \\ 1, & \text{for } z \ge z_c. \end{cases}$$
(1)

with $\mu'(z_c) = 0$, so that we (smoothly) recover GR at large-z.

RECONSTRUCTING $\mu(z)$

Calderón, L'Huillier, Polarski, Shafieloo, Starobinsky '23 - 2301.00640

We use the reconstructed expansion history h(z) from the SN+BAO chains

$$f' + \left(f + 2 + \frac{h'}{h}\right)f = \frac{3}{2}\Omega_m \,\mu(z).$$

$$\longrightarrow$$
 Sample $\theta = \{\sigma_8; \sigma_f, \ell_f, z_c\}!$

 $\sigma_{8,0}^{\rm fid}=0.81$

Two profiles, purely phenomenological "Toy-models"

Figure: Reconstructions of $\mu \equiv G_{\text{eff}}/G$ from RSD mocks, assuming h(z) as determined by the SN+BAO chains.

Can represent a large class of models!

RECONSTRUCTING $\mu(z)$

Calderón, L'Huillier, Polarski, Shafieloo, Starobinsky '23 - 2301.00640

Figure: Reconstructions of $\mu \equiv G_{\rm eff}/G$ at two redshifts z = 0, 1.4, assuming h(z) as determined by the SN+BAO chains.

We use the reconstructed expansion history h(z) from the SN+BAO chains

$$f' + \left(f + 2 + \frac{h'}{h}\right)f = \frac{3}{2}\Omega_m \,\mu(z).$$

$$\longrightarrow$$
 Sample $\theta = \{\sigma_8; \sigma_f, \ell_f, z_c\}!$

- Unbiased estimation of $\sigma_{8,0}$!
- At z = 1.4, DESI could distinguish the bump (in Red) from GR at $\gg 2\sigma!$

Reconstructing $\mu(z)$

Calderón, L'Huillier, Polarski, Shafieloo, Starobinsky '23 - 2301.00640

Figure: Constraints on cosmo+hyper parameters from RSD mocks, assuming h(z) as determined by the SN+BAO chains.

We use the reconstructed expansion history h(z) from the SN+BAO chains

$$f' + \left(f + 2 + \frac{h'}{h}\right)f = \frac{3}{2}\Omega_m \,\mu(z).$$

$$\longrightarrow$$
 Sample $\theta = \{\sigma_8; \sigma_f, \ell_f, z_c\}$

The posteriors of the hyperparameters indicate the underlying theory of gravity is not consistent with GR ($\sigma_f \neq 0$)!

CONCLUSION

- "Model-independent" approach to jointly reconstruct both
 Growth & Expansion Histories with minimal assumptions
 (Flat) FLRW + EdS
- \cdot Accurately reconstruct the Dark Energy evolution $f_{
 m DE}(z)$ & $G_{
 m eff}(z)$
- · Unbiased estimation of cosmological parameters: Ω_m, σ_8
- \cdot Assuming $\Lambda {\rm CDM}$ can severely bias our interpretation of the results
- \cdot DESI+Roman-like can potentially detect deviations from Λ +GR
 - Euclid, Rubin (LSST), CMB-S4, + many more...

U.S. Department of Energy Office of Science

DESI is currently gathering data ! (already has more than all previous galaxy surveys combined)

 \longrightarrow Stay tuned!

calderon@kasi.re.kr

Thank you for your attention