	Conclusion
0000000	0

Reconstructing the Local Universe with Neural Networks MNRAS 522 (2023) 5291 (arXiv:2212.06439)

Robert Lilow with Punyakoti Ganeshaiah Veena and Adi Nusser

Technion - Israel Institute of Technology

July 2023 Cosmology from Home

• Compare reconstructed and observed peculiar velocities to constrain the growth rate

$$-\frac{1}{H}\vec{\nabla}_r\cdot\vec{v}^{(\mathsf{lin})} = f\,\delta \qquad \qquad f \approx \Omega_{\mathrm{m}}^{0.55}$$

• Use reconstructed peculiar velocities to reduce errors in low-z Hubble measurement

$$z^{\text{cosmo}} = \frac{1 + z^{\text{observed}}}{1 + z^{\text{peculiar}}} - 1$$

- Caveats of traditional inference methods
 - Often assume simplified model for prior, likelihood, bias
 - Expensive for sophisticated model
- Neural nets (NNs) may help
 - Learn prior, likelihood, bias, selection from mock signal and data
 - · Can be trained relatively cheaply on one or few GPUs
- But can we trust the neural net results?

• Mean Squared Error loss

$$MSE = \sum_{S,D} P(S,D) \left(\hat{S}(D) - S \right)^2$$

Linear NN

$$\hat{S}^{\ln \mathrm{NN}}(D) = wD + b$$

Minimize MSE

$$\frac{\partial \text{MSE}}{\partial w_{ij}} = 0 = \frac{\partial \text{MSE}}{\partial b_i}$$

 $\Rightarrow \text{ Equivalent to Wiener filter}$ $\hat{S}^{\ln \text{NN}}(D) = \langle SD \rangle \langle DD \rangle^{-1} D = \hat{S}^{\text{WF}}(D)$

- D : data
- S: signal
- \hat{S} : signal estimate

adapted from Ganeshaiah Veena, RL,

Nusser MNRAS 522 (2023) 5291

• Mean Squared Error loss

$$MSE = \sum_{S,D} P(S,D) \left(\hat{S}(D) - S \right)^2$$

• Minimize MSE for general (nonlinear) NN

$$0 = \frac{\delta MSE}{\delta \hat{S}^{NN}(D)} = 2 \sum_{S} \underbrace{P(S,D)}_{P(S|D)P(D)} (\hat{S}^{NN}(D) - S)$$
$$\Rightarrow \hat{S}^{NN}(D) = \sum_{S} P(S|D)S = \langle S|D \rangle$$

 \Rightarrow Equivalent to mean of posterior (if sufficiently expressive)

00		●0000000	Onclusion O
U-Net Auto	encoder (AE)		

- Deep encoder + decoder NN with skip connections
- Very expressive and scalable

Visual comparison

Motivation		Tests	Conclusion
00		0●000000	0
Cross-check for C	Gaussian fields		

Point-by-point comparison

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

 \Rightarrow AE agrees with Wiener filter for Gaussian fields

Motivation	Interpretation	Tests	Conclusion
00	00	00●00000	O
Non-Gaussian fie	lds		

- Simplified mock fields:
 - Periodic box with 300 h^{-1} Mpc side length
 - Fields on 128³ grid
 - Signal: 2LPT density and velocity fields
 - Data: Poisson-sampled galaxies with $\bar{n} = 5 \times 10^{-3} h^3 \text{ Mpc}^{-3}$
 - RSD along Z-axis
 - 1000 realizations

00		

Interpretati

Tests 000●0000

Conclusion

Density reconstruction

<u> </u>	00	0000000	0
Donaity road	activation		

MSE loss

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

\Rightarrow AE more accurate than WF

Motivation	Interpretation	Tests	Conclusion
00	00	000●0000	O
Density reco	onstruction		

· Point-by-point and binned comparisons

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

\Rightarrow AE matches behaviour of mean posterior estimate

Motivation 00		Tests 0000●000	Conclusion O
Velocity red	construction		
300 240	(Lagrangian)	(WF (Lagrangian)	

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

Motivation Interpretation lests 00 00 00000000	
Motivation Interpretation lests	
na se	Conclusion

Lagrangian velocity MSE loss

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

\Rightarrow AE more accurate than WF

Motivation	Interpretation	Tests	Conclusion
00	00	0000●000	O
Velocity reconstr	uction		

Lagrangian velocity point-by-point and binned comparisons

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

\Rightarrow AE matches behaviour of mean posterior estimate

Motivation	Interpretation	Tests	Conclusion
00	00	00000●00	O
Density reconstru	iction with mask		

slice

Ganeshaiah Veena, RL, Nusser MNRAS 522 (2023) 5291

00	00	0000000	0
Preliminary	Reconstruction	from realistic mocks	

- Mocks from Quijote simulations (Villaescusa-Navarro+ 2020)
- RSD in radial direction
- Radial selection function
- Galaxy bias

- \Rightarrow AE handles realistic RSD, selection and bias
- \Rightarrow AE is consistently more accurate than WF

- Traditional reconstruction methods often with simplified model and/or expensive
- Neural net learns statistics, selection, bias from mocks
- Neural net with MSE loss yields efficient mean posterior estimate
- Mean posterior reconstruction consistently improves over Wiener filter
- Next step: apply to surveys