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H o is a Hubble constant
H 0= 67.4 km S'll\/IpC'1 (Planck 2018 results)
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Accelerated expansion of the Universe
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Nobel Prize in Physics 2011
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Figure 4. Hubble diagram for the Union2 1 compilation. The solid line represents the best-fit cosmology for a flat ACDM Universe for supernovae alone.
SN SCP0GUH4 falls outside the allowed x1 range and is excluded from the current analysis. When fit with a newer version of SALT2. this supernova passes the
cut and would be included, so we plot it on the Hubble diagram. but with a red tnangle symbol.
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Saul Perimutter Brian P. Schmidt Adam G. Riess

The Nobel Prize in Physics 2011 was awarded "for the discovery of the
accelerating expansion of the Universe through observations of distant
supernovae" with one half to Saul Perimutter and the other half jointly to Brian P.
Schmidt and Adam G. Riess.
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Dark energy models

 Cosmological standard ACDM model (the concept of vacuum
energy)

* Scalar field pCDM models
- Quintessence (freezing/thawing) models
- Phantom models

 Tachyon field models

* Dilaton field models

« K-essence models

 Holographic dark energy models

 Barotropic fluid or Chaplygin gas models

 Coupled dark matter (neutrino) - dark energy models
and many more...



Cosmological Constant A

“Einstein’s Greatest Blunder”

1
R V—EgWR—AgW :87zGTW

y7;

« The simplest description for dark energy is the concept of vacuum energy or the time-
independent cosmological constant A, first introduced by Albert Einstein;

 The cosmological model based on such a description of dark energy in the spatially flat

Universe is called the standard, concordance or fiducial Lambda Cold Dark Matter
(ACDM) model;

« The ACDM model is based on GR for description of gravity in the Universe on large scales;

« The energy density associated with the cosmological constant is about 70% of the total
energy density of the Universe at present;

1 ' .
 The action: S=— e / d*z/—g(R + 2A) + Sy
. . 2 87} | - a e A
« Friedmann’s equations: @0 :( PA — k| —X — = " (pa +3pa) + 3
a? 3 a? 3 a 3 3

where g is the determinant of the metric tensor g;y; R is the Ricci scalar, a is a scale factor, S,, denotes the matter action, p, and p, = ﬁ

are the pressure and dark energy density of the cosmological constant A, respectively; k is a curvature parameter; A = 4.33- 10%6ev.



Problems of the ACDM model as a
crisis in modern cosmology

Being still a fiducial cosmological model at present, the ACDM
model has several still unsolved problems, the number of which
increases as more accurate observational data are obtained.

The main of which are:

* Fine tuning or cosmological constant problem (the observed value of the
cosmological constant A is 120 values less than it§gheergtitialishpredicted value);

 Coincidence pI‘Oblem (according to the data of the Planck satellite, at present epoch the

cosmolo%ical constant energy density (68.5%) is comparable (in order of ma%nitude) with the energy density of
matter (31.5%), despite the fact that these quantities have evolved differently);

¢ Hllbble parameter tension problem (a discrepancy between the value of Hubble

parameter H, at present epoch obtained by the local measurements and CMB temperature anisotropy data);

¢ The parameter SB = GBX/Qm/O“O’ tension problem (a discrepancy between the

primary CMB temperature anisotropy measurements by the Planck satellite in the stren%th of matter clustering
compared to lower redshift measurements such as the weak gravitational lensing and galaxy clustering.) Here o3 is
the clus;;cerlng amplitude of the matter power spectrum on scales of 8h-'Mpc, Q,, is a fractional matter density
parameter.



Problems of the ACDM model
as a crisis in modern cosmology

« The problem of the shape of the Universe (the « The preference for observational data of
preference for observational data of closed dynamical dark energy (in particular,
hyperspaces) phantom dark energy).
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Credit: Aghanim et al. (Planck 2018 results)
Credit: Aghanim et al. (Planck 2018 results)

The presence of all the above discrepancies of the ACDM model is interpreted as a crisis of modern cosmology.
Although some of them may be due to systematic errors, their persistence strongly points to the need for new
physics and new cosmological models that go beyond the standard ACDM scenario, on the one hand, and on
tensions and anomalies in the current CMB data, the “queen” of cosmological data, on the other.



Dynamical scalar field $¢CDM models

In these models, dark energy is represented in the form of a slowly varying uniform
cosmological scalar field at present;

This family of models avoids the coincidence problem of the ACDM model;

In these models, the energy density p(t) and pressure p(t) are time dependent
functions under the assumption that t[lwgga&%ﬁghq][grés described by the ideal
barotropic fluid model;

Dark energy models are characterized by the equation of state parameter, w = p/p:

A
for the ACDM model: p; = —pp = — e = const > w, = z—" =—-1
A

for $CDM models: wy(t) # —1
w4 (t) = —1 (nowadays)

Dynamical dark energy can mimic the cosmological constant A at present, while
becoming almost indistinguishable from it.



Quintessence and Phantom scalar field $¢CDM models

S = /m\/_g[ Mg, z:d-,} + Sy
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Quintessence models Phantom models
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By the d}fllﬂillics of scalar fields:
the gquintessence field rolls gradually
to the minimum of its potential.

The phantom field rolls to the max-
imum of its potential.

By the temporal evolution of
dark energy: the dark energyv den-
sity for the quintessence field re-
mains almost unchanging with time.

the

phantom field increases with time.

The dark energy density for

By forecasting the future of the
Universe: depending on the spa-
tial curvature of the Universe. the
quintessence models predict either
an eternal expansion of the Universe,
or a repeated collapse.

Phantom models predict the de-

struction of any gravitationally-

related structures in the Universe.




The quintessence Ratra-Peebles scalar field $¢CDM model

 Inverse power-law Ratra-Peebles potential:
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B. Ratra and P. J. E. Peebles, Phys. Rev. D37, 3406 (1988) £o
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The phantom inverse hyperbolic cosine scalar field $CDM model

e Phantom inverse

hyperbolic cosine potential:
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V(o) = Vycosh™ (o)
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The quintessence Ratra-Peebles scalar field $CDM model

* The expansion rate E(a) = H(a)/Ho = (Qrot'z._4 + Quoa > +

1 . Ca 1/2
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 The scalar field equation
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 The scalar field density parameter 1y = 12H2 (C-’)_ + f'i'-ﬂfli@ Q)

 The energy density of the scalar field
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* We consider a flat and isotropic universe, which is described by the space time Friedmann-Lemaitre -Robertson-Walker
(FLRW) metric: ds? = —dt? +a(t)*dx? , with normalization of the scale factor to be equal to one at present time, a4,y = a9 =
1, H(a) is a Hubble parameter, 2,, is a density parameter for radiation at present epoch, 2,,, is a density
parameter for matter at present epoch.



The phantom inverse hyperbolic cosine scalar field $¢CDM model

_ ) _ ) 1 h ] 1/2
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The expansion rate 6HZ\ 2
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The equation of state parameter — 2 /2 + Vg cosh™! (Vo)

We consider a flat and isotropic universe, which is described by the space time Friedmann-Lemaitre -
Robertson-Walker (FLRW) metric: ds? = —dt? +a(t)?dx? , with normalizationoof the scale factor to be equal
to one at present time, a;,4,y = a9 =1



Evolution of the equation of state parameters in $CDM models
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- The evolution of the equation of state parameters for the quintessence and
phantom scalar field models for ixed model parameters in them is presented
here.



Evolution of the equation of state parameters in pCDM models
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- A larger value of the parameter « in the quintessence Ratra-Peebles model
and the parameter ¢ in the phantom inverse hyperbolic cosine model causes
an increase in dark energy and, thus, a stronger time dependence of the equa-
tion of state parameters in these models and vice versa.



Hubble expansion of the Universe in scalar field $CDM models
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- The expansion rate of the Universe is faster in quintessence scalar field
A CDM models and slower in phantom scalar field ¢CDM models, in compar-

ison with the ACDM model.



E(a)

Hubble expansion of the Universe in the
quintessence Ratra-Peebles $CDM model
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- In gquintessence scalar field models, the expansion of the Universe occurs
faster with an increase in the value of the parameter a, and, conversely, in
phantom scalar field models, with an increase in the value of the parameter
1, the expansion of the Universe occurs more slowly.
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Energy components of the Universe in $¢CDM models
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- The epoch of dominance of dark energy is established earlier in guintessence
scalar field ¢CDM models and later in phantom scalar field ¢CDM models,
in comparison with the ACDM model.



Energy components of the Universe in $CDM models
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- In guintessence scalar field models, the energetic domination of dark en-
ergy began earlier with an increase in the value of the parameter «, and,
conversely, in phantom scalar field models, with an increase in the value of
the parameter v, the energetic domination of dark energy began later.
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Dynamics of the Universe in ¢CDM models
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- The dyvnamic dominance of dark energy began earlier in the quintessence
field than in the phantom feld.

- Both in the quintessence and in phantom scalar fields models, the dyvnamic
dominance of dark energyv began earlier than the energy dominance at a hxed
value of the model parameter in these models.



What is the influence of $CDM models on the evolution of large-scale structures?

CMB map from Planck space experiment
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Credit: Ade et al. (Planck 2013 results)
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Influence of $CDM models on the formation
of the large-scale structure in the universe

. L _'l' . L r .
The linear perturbation equation 5 4 (_:; 1 L )ﬁ' _ 3 2m 0 5=10
| 2a°E*

(1 E

F. Pace, J.-C. Waizmann and M. Bartelmann, Mon. Not. Roy. Astron. Soc. 406, 1865 (2010)

— ]
The matter density fluctuations J = pT 1‘5\ \P) Say) = 8 (ay) = 5 - 1075
I". !
D(a) d(a)
. a) = —
The linear growth factor 5(ap)
din D(a)
The large-scale structure growth rate fla) =

dlna



The evolution of the linear growth factor in $CDM models
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- Larger values of the matter density fluctuations are generated in guintessence
scalar field #CDM models and smaller values in phantom scalar field ¢CDM
models, compared to the ACDM model.



The linear growth factor of the matter density fluctuations
in the quintessence Ratra-Peebles model
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- In guintessence scalar field models, the larger values of the matter density
Huctuations are generated with an increase in the value of the parameter «,
and, conversely, in phantom scalar field models, the smaller values of the
matter density Huctuations are generated with an increase in the value of the

parameter 0.



The evolution of the large-scale structure
growth rate in CDM models
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-The large-scale structure growth rate is slower 1n quintessence scalar fields,
but faster in phantom scalar fields, because in quintessence scalar fields, the
Hubble expansion is faster than in phantom scalar fields, which leads to sup-
pression of the large-scale structure growth rate in the Universe.



The evolution of the large-scale structure growth rate in $CDM models
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- In guintessence scalar field models, the large-scale structure growth rate
slows down with an increase in the wvalue of the parameter a, and, con-
versely, in phantom scalar field models, with an increase in the value of the
parameter 10, the large-scale structure growth rate rapids. 26



Constraints from the growth rate data
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- Using the growth rate data alone, we have got the highly degenerated likelihood contours

in the o — €},,, plane.

- If we fix a = 0, we get the best fit value of €, = 0.27840.03, which is within 1o confedence

level of the Planck 2013 data.
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Constraints from the BAO data
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The addition of the BAO data and distance prior from CMB broke the degeneracy:

0 <a<1.3at 1o confidence level
0.26 < ), < 1.34 at 1o confidence level



Monte Carlo Markov Chains (MCMC) analysis
with upcoming DESI data
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Carrying out the MCMC analysis with upcoming DESI data, we obtained ranges of a and {2, parameters, 0 < a < 0.16
and 0.296 < ,, < 0.32 at 30 confidence level, where the Ratra-Peebles ¢CDM model is compliance with the ACDM
model.
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Conclusion

Scalar field $CDM models differ from the ACDM model in a number of characteristics,
which are generic for these models.

Compared to the ACDM model,

« the Hubble expansion rate of the Universe is faster in quintessence scalar field models
and slower in phantom scalar field models;

 dynamic and energetic domination of dark energy began earlier in quintessence
scalar field models and later in phantom scalar field models;

« Jlarger values of matter density fluctuations are generated in quintessence scalar field
models and smaller values in phantom scalar field models;

 the large-scale structures growth rate of the Universe is faster in phantom scalar field
models and slower in quintessence scalar field models.






