Non-Gaussianity in rapid-turn multi-field inflation

Oksana larygina

Cosmology from Home July 2023

Early Universe cosmology

ly Universe cosmology Ear

In the beginning, there was (probably) inflation

CMB observations constrain the power spectra of primordial scalar and tensor perturbations

$$P_{\mathcal{R}}(k) = \left(\frac{H}{\dot{\phi}}\right)^2 P_{\delta\phi}(k)$$

 $\langle \mathcal{R}_k \mathcal{R}_{k'} \rangle = (2\pi)^3 \delta^{(3)} (k+k') P_{\mathcal{R}}(k)$

$$\Delta_{\mathcal{R}}^2(k) = \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1}$$

amplitude of the scalar power spectrum

$$n_s - 1 = \frac{d \ln \Delta_{\mathcal{R}}^2(k)}{d \ln k}$$

scalar spectral index

Current observational bounds from CMB

 $n_s = 0.9603 \pm 0.0073,$ r < 0.044

Oksana larygina

6

July 2023

r =

Bi-spectrum

 $\left\langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \right\rangle = (2\pi)^3 \delta^{(3)} (\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\mathcal{R}}(k_1, k_2, k_3)$

Result of non-linear evolution of initially Gaussian fluctuations.

Non-Gaussianity

Bi-spectrum

$$\left\langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \right\rangle = (2\pi)^3 \delta^{(3)} (\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\mathcal{R}}(k_1, k_2, k_3)$$

Result of non-linear evolution of initially Gaussian fluctuations.

$$B_{\mathcal{R}}(k_1, k_2, k_3) \propto \sum_{\mathrm{type}} f_{\mathrm{NL}}^{\mathrm{type}} S_{\mathrm{type}}(k_1, k_2, k_3)$$

equilateral

local 🔏

Non-Gaussianity

$$\begin{array}{c} & \text{Bi-spectrum} \\ & & \text{B$$

$$-\frac{6}{5}f_{\rm NL} = \frac{B_{\mathcal{R}}(k_1, k_2, k_3)}{P_{\mathcal{R}}(k_1)P_{\mathcal{R}}(k_2) + (\vec{k} \text{ cyclic perms})}$$

Non-Gaussianity in single-field inflation

Single-field models of inflation most strongly couple momenta of similar wavelengths and result in bispectra that are highly suppressed in the 'squeezed limit' where one long-wavelength-mode couple to two short-wavelength-modes.

July 2023

Oksana larygina

Non-Gaussianity in single-field inflation

Detection of $f_{\rm NL}^{\rm loc} \simeq \mathcal{O}(1)$ would rule out all attractor models of single-field inflation!

July 2023

Oksana larygina

Multi-field inflation

[A. Achucarro, E. Copeland, O.I. et al]

[O.I., E. Sfakianakis, D.-G.Wang, A. Achucarro]

[A. Achucarro, R. Kallosh, A. Linde et al]

Multi-field inflation and turning trajectory

Multi-field inflation and turning trajectory

Turn-rate: $D_N e^a_{\parallel} = \eta_{\perp} e^a_{\perp}$

Trajectory turns couple the fluctuations and modify their dispersion relations and correlators.

Multi-field inflation and turning trajectory

field-space metric

multi-field potential

Two types of field perturbations:

- Adiabatic (curvature) - along trajectory ${\cal R}$

- Non-Adiabatic (isocurvature) ----- orthogonal to trajectory ${\cal S}$

Turn-rate:

$$D_N e^a_{\parallel} = \eta_{\perp} e^a_{\perp}$$

[D. Wands, K.Malik, D. Lyth, A. Liddle, 2000] [L. Amendola, C. Gordon, D. Wands, M. Sasaki, 2002] [D. Wands, N. Bartolo, S. Matarrese, A. Riotto,2002]

 $egin{array}{rll} \dot{\mathcal{R}} &\simeq lpha H \mathcal{S} \ \dot{\mathcal{S}} &\simeq eta H \mathcal{S} \end{array}$

$$\alpha = 2 \eta_{\perp}$$

$$\beta = -2\epsilon - \frac{\mathcal{M}_{\perp\perp}}{V} + \frac{\mathcal{M}_{\parallel\parallel}}{V} - \frac{4}{3} (\eta_{\perp})^2$$

 $\overline{\mathcal{M}^{a}}_{b} = \overline{G^{ac}} \nabla_{b} \nabla_{c} V - \overline{R^{a}_{dfb}} \dot{\phi}^{d} \dot{\phi}^{f}$

[D. Wands, K.Malik, D. Lyth, A. Liddle, 2000] [L. Amendola, C. Gordon, D. Wands, M. Sasaki, 2002] [D. Wands, N. Bartolo, S. Matarrese, A. Riotto,2002]

 $\begin{cases} \dot{\mathcal{R}} \simeq \alpha H \mathcal{S} \\ \dot{\mathcal{S}} \simeq \beta H \mathcal{S} \\ \alpha = 2 \eta_{\perp} \\ \beta = -2\epsilon - \frac{\mathcal{M}_{\perp \perp}}{V} + \frac{\mathcal{M}_{\parallel \parallel}}{V} - \frac{4}{S} (\eta_{\perp})^2 \end{cases}$

The sourcing of curvature perturbations by isocurvature perturbations is proportional to the turn-rate!

[D. Wands, K.Malik, D. Lyth, A. Liddle, 2000] [L. Amendola, C. Gordon, D. Wands, M. Sasaki, 2002] [D. Wands, N. Bartolo, S. Matarrese, A. Riotto,2002]

 $\begin{aligned} \dot{\mathcal{R}} &\simeq \alpha H \mathcal{S} \\ \dot{\mathcal{S}} &\simeq \beta H \mathcal{S} \end{aligned}$

$$\alpha = 2 \eta_{\perp}$$

$$\beta = -2\epsilon - \underbrace{\underbrace{\mathcal{M}_{\perp\perp}}_{V}}_{V} + \underbrace{\underbrace{\mathcal{M}_{\parallel\parallel}}_{V}}_{V} - \frac{4}{3} (\eta_{\perp})^{2}$$

$$\mathcal{M}^{a}{}_{b} = G^{ac} \nabla_{b} \nabla_{c} V - R^{a}_{dfb} \dot{\phi}^{d} \dot{\phi}^{j}$$

Determined by potential & geometry of field-space.

[D. Wands, K.Malik, D. Lyth, A. Liddle, 2000] [L. Amendola, C. Gordon, D. Wands, M. Sasaki, 2002] [D. Wands, N. Bartolo, S. Matarrese, A. Riotto,2002]

$$\begin{cases} \dot{\mathcal{R}} &\simeq \alpha HS \\ \dot{\mathcal{S}} &\simeq \beta HS \\ \alpha &= 2 \eta_{\perp} \\ \beta &= -2\epsilon - \frac{\mathcal{M}_{\perp\perp}}{V} + \frac{\mathcal{M}_{\parallel\parallel}}{V} - \frac{4}{3} (\eta_{\perp})^2 \end{cases}$$

$$\begin{split} \langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \rangle &= \frac{1}{2\epsilon} \langle \delta \phi_{\parallel \vec{k}_1} \delta \phi_{\parallel \vec{k}_2} \rangle \implies P_{\mathcal{R}} & \text{Power curve} \\ \langle \mathcal{R}_{\vec{k}_1} \mathcal{S}_{\vec{k}_2} \rangle &= \frac{1}{2\epsilon} \langle \delta \phi_{\parallel \vec{k}_1} \delta \phi_{\perp \vec{k}_2} \rangle \implies C_{\mathcal{RS}} & \text{crosser curve} \\ \langle \mathcal{S}_{\vec{k}_1} \mathcal{S}_{\vec{k}_2} \rangle &= \frac{1}{2\epsilon} \langle \delta \phi_{\perp \vec{k}_1} \delta \phi_{\perp \vec{k}_2} \rangle \implies P_{\mathcal{S}} & \text{isoccurve} \end{split}$$

Power spectrum of curvature perturbations,

cross-correlation,

isocurvature perturbations.

Oksana larygina

Slow-turn vs rapid-turn inflation

[C. Peterson, M. Tegmark, 2011]

Slow-turn: $\eta_{\perp} \ll 1$

$$f_{\rm NL}^{\rm loc} \supset \frac{5}{6} \sqrt{\frac{r}{8}} \left(\frac{T_{\mathcal{RS}}}{\sqrt{1 + T_{\mathcal{RS}}^2}} \right)^3 \partial_{\perp *} \ln T_{\mathcal{RS}}$$

$$\begin{pmatrix} \mathcal{R} \\ \mathcal{S} \end{pmatrix} = \begin{pmatrix} 1 \ T_{\mathcal{RS}} \\ 0 \ T_{\mathcal{SS}} \end{pmatrix} \begin{pmatrix} \mathcal{R}_* \\ \mathcal{S}_* \end{pmatrix}$$

Slow-turn vs rapid-turn inflation

[C. Peterson, M. Tegmark, 2011]

Slow-turn: $\eta_{\perp} \ll 1$

$$f_{\rm NL}^{\rm loc} \supset \frac{5}{6} \sqrt{\frac{r}{8}} \left(\frac{T_{\mathcal{RS}}}{\sqrt{1 + T_{\mathcal{RS}}^2}} \right)^3 \partial_{\perp *} \ln T_{\mathcal{RS}}$$

$$\begin{pmatrix} \mathcal{R} \\ \mathcal{S} \end{pmatrix} = \begin{pmatrix} 1 \ T_{\mathcal{RS}} \\ 0 \ T_{\mathcal{SS}} \end{pmatrix} \begin{pmatrix} \mathcal{R}_* \\ \mathcal{S}_* \end{pmatrix}$$

What is differrent in the rapid-turn regime? $~\eta_{\perp}\gg 1$

[arXiv:2303.14156]

M.C. David Marsh

Gustavo Salinas

Non-Gaussianity in rapid-turn multi-field inflation

 Oksana Iarygina^{1,2}, M.C. David Marsh², Gustavo Salinas^{2*}
 ¹Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
 ² The Oskar Klein Centre, Department of Physics, Stockholm University, Stockholm 106 91, Sweden

Non-Gaussianity from the δN -formalism

[D.H. Lyth and Y. Rodriguez, (2005)]

$$\left\langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \right\rangle = N_a N_b N_c \left\langle \delta \phi^a_{*\vec{k}_1} \delta \phi^b_{*\vec{k}_2} \delta \phi^c_{*\vec{k}_3} \right\rangle$$
$$+ \frac{1}{2} N_a N_b N_{cd} \left\langle \delta \phi^a_{*\vec{k}_1} \delta \phi^b_{*\vec{k}_2} \left(\delta \phi^c_{*} * \delta \phi^d_{*} \right)_{\vec{k}_3} \right\rangle + (\vec{k} \text{ cyclic perms}) + \cdots$$

Slow-turn: $\eta_{\perp} \ll 1$

$$\langle \delta \phi^a_{*\vec{k}_1} \delta \phi^b_{*\vec{k}_2} \rangle = (2\pi)^3 \delta^{(3)} (\vec{k}_1 + \vec{k}_2) P^*_{\phi}(k_1) \delta^{ab}$$

Slow-turn: $\eta_{\perp} \ll 1$ $\langle \delta \phi^a_{*\vec{k}_1} \delta \phi^b_{*\vec{k}_2} \rangle = (2\pi)^3 \delta^{(3)} (\vec{k}_1 + \vec{k}_2) P^*_{\phi} (k_1) \delta^{ab}$ $P_{\mathcal{R}*} = P_{\mathcal{S}*}, \quad C_{\mathcal{R}\mathcal{S}*} = 0$

[OI, D. Marsh, G. Salinas, 2023]

Slow-turn: $\eta_{\perp} \ll 1$

$$\langle \delta \phi^{a}_{*\vec{k}_{1}} \delta \phi^{b}_{*\vec{k}_{2}} \rangle = (2\pi)^{3} \delta^{(3)} (\vec{k}_{1} + \vec{k}_{2}) P^{*}_{\phi} (k_{1}) \delta^{ab}$$

$$P_{\mathcal{R}*} = P_{\mathcal{S}*}, \quad C_{\mathcal{R}\mathcal{S}*} = 0$$

Rapid-turn: $\eta_{\perp} \gg 1$ $\langle \delta \phi^a_{*\vec{k}_1} \delta \phi^b_{*\vec{k}_2} \rangle = (2\pi)^3 \delta^{(3)} (\vec{k}_1 + \vec{k}_2) P_{\phi}^{*ab}(k_1)$ $P_{\mathcal{R}*} \neq P_{\mathcal{S}*} \neq C_{\mathcal{RS}*} \neq 0$

[OI, D. Marsh, G. Salinas, 2023]

Slow-turn: $\eta_{\perp} \ll 1$

$$-\frac{6}{5}f_{\rm NL}^{(4)} = \frac{N_a N_b N^{ab}}{(N_c N^c)^2}$$

Rapid-turn: $\eta_{\perp} \gg 1$

$$-\frac{6}{5}f_{\rm NL}^{(4)} = \frac{N_a N_b N_{cd} \left[P_{\phi}^{*ac} \left(k_1\right) P_{\phi}^{*bd} \left(k_2\right) + \left(\vec{k} \text{ cyclic perms}\right)\right]}{N_e N_f N_g N_h \left[P_{\phi}^{*ef} \left(k_1\right) P_{\phi}^{*gh} \left(k_2\right) + \left(\vec{k} \text{ cyclic perms}\right)\right]}$$

Rapid-turn: $\eta_{\perp} \gg 1$

[OI, D. Marsh, G. Salinas, 2023]

$$-\frac{6}{5}f_{\mathrm{NL}}^{(4)}(k_1, k_2, k_3) = \sum_{I,J=\mathcal{R},\mathcal{C}} f_{\mathrm{NL}}^{IJ} \frac{\tilde{\mathcal{P}}^I(k_1)\tilde{\mathcal{P}}^J(k_2) + (\vec{k} \text{ cyclic perms})}{P_{\mathcal{R}}(k_1)P_{\mathcal{R}}(k_2) + (\vec{k} \text{ cyclic perms})}$$
$$\downarrow$$
$$f_{\mathrm{NL}}^{\mathcal{R}\mathcal{R}}, f_{\mathrm{NL}}^{\mathcal{R}\mathcal{C}}, f_{\mathrm{NL}}^{\mathcal{C}\mathcal{R}}, f_{\mathrm{NL}}^{\mathcal{C}\mathcal{C}}$$
$$\tilde{\mathcal{P}}^{\mathcal{R}}(k) = P_{\mathcal{R}}(k) \ , \ \tilde{\mathcal{P}}^{\mathcal{C}}(k) = C_{\mathcal{RS}}(k)$$

Rapid-turn: $\eta_{\perp} \gg 1$

[OI, D. Marsh, G. Salinas, 2023]

Scale dependence and new shape functions!

Rapid-turn: $\eta_{\perp} \gg 1$

[OI, D. Marsh, G. Salinas, 2023]

Assuming the scale-invariant power spectrum, it reduces to:

$$f_{\mathrm{NL}}^{(4)} \supset \eta_{\perp} I_4 + \tilde{M}_{\perp \perp *} I_5 + \tilde{M}_{\perp \parallel *} I_6$$

 $I_i = I_i \left(T_{\mathcal{RS}}, \mathcal{C}_{\mathcal{RS}}, P_{\mathcal{S}}/P_{\mathcal{R}} \right)$

New model-independent potentially large contributions to the non-Gaussianity parameter!

[P. Christodoulidis, D. Roest, E. I. Sfakianakis, 2019]

$$V(\phi,\chi) = \frac{\tilde{\alpha}}{2} \left(m_{\phi}^2 \phi^2 + m_{\chi}^2 \chi^2 \right)$$

$$G_{ab} = \frac{6\tilde{\alpha}}{\left(1 - \phi^2 - \chi^2\right)^2} \delta_{ab}$$

[OI, D. Marsh, G. Salinas, 2023]

$$V(\phi,\chi) = \frac{\tilde{\alpha}}{2} \left(m_{\phi}^2 \phi^2 + m_{\chi}^2 \chi^2 \right)$$

$$G_{ab} = \frac{6\tilde{\alpha}}{\left(1 - \phi^2 - \chi^2\right)^2} \delta_{ab}$$

[OI, D. Marsh, G. Salinas, 2023]

Power spectrum of curvature perturbations,

July 2023

[OI, D. Marsh, G. Salinas, 2023]

$$f_{\rm NL}^{\rm loc} = -\frac{5}{6} \left(0.006 \, I_{1*} + 1.89 \, I_{2*} + 0.004 \, I_{3*} - 2.35 \, I_{4*} - 0.015 \, I_{5*} + 2.3 \, I_{6*} \right)$$

[OI, D. Marsh, G. Salinas, 2023]

$$f_{\rm NL}^{\rm loc} = -\frac{5}{6} \left(0.006 \, I_{1*} + 1.89 \, I_{2*} + 0.004 \, I_{3*} - 2.35 \, I_{4*} - 0.015 \, I_{5*} + 2.3 \, I_{6*} \right)$$

 $f_{\rm NL}^{\rm loc} = 0.705 \simeq \mathcal{O}\left(1\right)$

Oksana larygina

Conclusions

1. Extended the δN -formalism to rapid-turn inflation.

2. Identified new model-independent potentially large contributions to the non-Gaussianity parameter.

3. The resulting bispectrum in general is not of the local shape.

- 4. Detection of Non-Gaussianity $f_{\mathrm{NL}}^{\mathrm{loc}} \simeq \mathcal{O}\left(1\right)$ signals:
- OR non-inflationary perturbations?

Conclusions

1. Extended the δN -formalism to rapid-turn inflation.

2. Identified new model-independent potentially large contributions to the non-Gaussianity parameter.

3. The resulting bispectrum in general is not of the local shape.

- 4. Detection of Non-Gaussianity $f_{\mathrm{NL}}^{\mathrm{loc}} \simeq \mathcal{O}\left(1\right)$ signals:
- New particles inflation with more than one field, curved field-space, steep potentials, UV competions...
- **OR** non-inflationary perturbations?

