

Beam modeling importance & techniques for current and next-generation CMB telescopes

Nadia Dachlythra July, 2023

(Some of the) CMB experiments

(soon!)

What information can we draw from the CMB?

CMB polarization ~ 10^{-2} · CMB temperature.

- CMB linear polarization: Thomson scattering of photons by free electrons.
- Circular polarization is not expected.
- E-modes:
 - strong, parity-even, curl-free
 - scalar and tensor perturbations

• CMB polarization ~ $10^{-2} \cdot$ CMB temperature.

- B-modes:
 - faint, parity-odd, divergence-free
 - only tensor perturbations

Credit: Essinger-Hileman et al. 2020, WMAP collaboration

The tensor-to-scalar ratio parameter

- Inflationary gravitational waves \rightarrow metric tensor perturbations.
- Tensor-to-scalar ratio, **r**: the ratio of the tensor to scalar perturbations amplitude.
- The latest constraints on **r** come from the BICEP/Keck 2018 and Planck PR4 data \rightarrow **r** < 0.032 at a 95% confidence level (*Tristram et al. 2022*).
- The SO telescopes : $\sigma(\mathbf{r}) \leq 0.003$.
- CMB-S4 and LiteBIRD : $\mathbf{r} > 0.003$ detection with a statistical uncertainty $\sigma(\mathbf{r}) < 0.001$.

... it's beam time!!

What do mean when we talk about beams?

- Instrument's response to a point source.
- Point-Spread-Functions (PSFs): main lobe + sidelobes.

Nadia Dachlythra July, 2023

Credit: D. Buscher, practical-optical-interferometry.

Why do we care?

- Sidelobes: Picking up unwanted parts of the sky (e.g. near the galaxy) or the ground.
- Ellipticity: Beam asymmetry can be problematic for cosmological analysis.
- Unwanted systematic bffs: Beam non-idealities can couple to other types of non-idealities in the experimental setup, as for example to Half-Wave-Plate (HWP) non-idealities (*Duivenvoorden et al. 2021*).

• Beam characteristics are propagated to the beam transfer function.

The importance of the beam transfer function

> For the measured CMB power spectra, \widetilde{C}_{i} :

$$\langle ilde{C}_\ell
angle = \sum_{\ell'} M_{\ell \ell'} F_{\ell'} B_{\ell'}^2 \langle C_{\ell'}
angle + \langle ilde{N}_{\ell'}
angle$$

- C_l: true power spectra,
- $\mathsf{F}_{_{\!\ell}}$: filter function,

 N_{ℓ} : Fourier transform of the noise covariance matrix

 M_{gr} : is the mode-mixing kernel.

Beam transforms from Uranus simulations of the ACT DR4 release.

Credit : Lungu et al., 2021

Astrophysical sources

On the field

Artificial sources

Near-field measurements

Nadia Dachlythra July, 2023 Holography

In the lab

Astrophysical sources

- Planets are common candidates for beam calibration (Weiland et al. 2011, The Planck Collaboration VII et al. 2013, Hasselfield et al. 2013, Lungu et al. 2022).
- The Moon is also a promising candidate for calibrating beam sidelobes but can saturate the telescope's detectors (*Xu et al. 2020*).
- Planets are not always available for observations when it comes to ground experiments.
- Not all planets are bright enough to calibrate the beam response of every CMB telescope.
- Not as many natural candidates for polarization calibration → Tau A has been used in the past (Kusaka et al. 2018).

Artificial sources

- Sources mounted on tall structures, balloons, satellites, drones (*Masi et al. 2006, Johnson et al. 2015, Nati et al. 2017, Ade et al. 2019, Dunner et al. 2021*).
- Not subject to availability issues.
- Can be tuned to achieve a higher Signal-to-Noise Ratio (SNR) as compared to planets.
- Promising solution to calibrate the instrument's polarized response (*Dunner et al. 2020*).

• May be subject to technical constraints (*Coppi et al. 2022*).

Credit: Dachlythra et al. 2023

Near-field measurements

- Measurements at the aperture plane.
- Thermal sources → blackbody emission spectrum.
- No phase information.
- Track internal reflections / provide feedback into optics fabrication process.

Credit: The BICEP2/ Keck Array Collaboration IV, 2015

Holography

- Near-field measurements with a coherent source.
- Map single frequencies within a frequency band.
- Amplitude + phase information.
- Obtain far-field maps:
 - Multiplying with fields produced by distant point source simulations.
 - Integrating over the focal plane.
 - $\circ \quad \text{Rotate the telescope} \rightarrow \text{full beam maps}.$

Credit: Chesmore et al. 2022

Conclusion

• Beams are important for CMB analysis.

• Beam analysis is (~) cool...

* Please let me know if there are any questions.** Thanks for watching the talk.