The submillimeter galaxy magnification bias as a cosmological probe

Marcos M. Cueli

Cosmology from Home 2023

2 Data and methodology

- The foreground and background galaxy samples
- The cross-correlation function: measurement and modeling

3 Results

- Dependence on the β parameter
- The large-scale cross-correlation and G15
- Adding clustering

4 Conclusions

Weak gravitational lensing

Weak gravitational lensing

Weak lensing studies the statistical correlations of magnification and distortion effects between foreground and background sources

Weak gravitational lensing

Weak lensing studies the statistical correlations of magnification and distortion effects between foreground and background sources:

- Cosmic shear: ellipticity x ellipticity
- Galaxy-galaxy lensing: ellipticity x position
- Cosmic magnification: position x position

The foreground-background number density correlation also probes the galaxy-matter connection!

$$w(\theta) \equiv \langle \delta n_f(\varphi) \delta n_b(\varphi + \theta) \rangle_{\varphi}$$

If the two samples do not overlap in redshift, a non-zero signal is a manifestation of magnification bias!

Gravitational magnification gives rise to two competing effects:

- Increase of the flux received from background sources
- Stretching of the solid angle subtended by background sources

Gravitational magnification gives rise to two competing effects:

- Increase of the flux received from background sources
- Stretching of the solid angle subtended by background sources

$$n_b(>S,z;\boldsymbol{ heta}) = rac{1}{\mu(\boldsymbol{ heta},z)} n_{b_0} \left(>rac{S}{\mu(\boldsymbol{ heta},z)},z
ight)$$

Gravitational magnification gives rise to two competing effects:

- Increase of the flux received from background sources
- Stretching of the solid angle subtended by background sources

$$n_b(>S,z;\boldsymbol{ heta}) = rac{1}{\mu(\boldsymbol{ heta},z)} n_{b_0} \left(>rac{S}{\mu(\boldsymbol{ heta},z)},z
ight)$$

The net effect (magnification bias) modifies the integral number counts with respect to no lensing!

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

González-Nuevo, J. et al. (2014)

Cosmology from Home 2023

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

• High redshift distribution

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

- High redshift distribution
- Low emission in the optical band

Cosmology from Home 2023

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

- High redshift distribution
- Low emission in the optical band
- Steep number counts

Negrello, M. et al. (2017)

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

- High redshift distribution
- Low emission in the optical band
- Steep number counts For instance, assuming a power-law, $n_{b_0}(>S,z)=A\,S^{-\beta},$ then

$$\delta n_b^{\mu}(\boldsymbol{\theta}) = \frac{n_b(>S, \boldsymbol{\theta}) - n_{b_0}(>S)}{n_{b_0}(>S)} \stackrel{\text{WL}}{\approx} 2(\beta - 1)\kappa(\boldsymbol{\theta})$$

As shown by Wang, L. et al. (2011) and González-Nuevo, J. et al. (2014), submillimeter galaxies are an optimal background sample:

- High redshift distribution
- Low emission in the optical band
- Steep number counts For instance, assuming a power-law, $n_{b_0}(>S,z)=A\,S^{-\beta},$ then

$$\delta n_b^{\mu}(\boldsymbol{\theta}) = \frac{n_b(>S,\boldsymbol{\theta}) - n_{b_0}(>S)}{n_{b_0}(>S)} \stackrel{\mathrm{WL}}{\approx} 2(\beta - 1)\kappa(\boldsymbol{\theta})$$

Moreover, the magnitude of the effect depends on cosmology:

The submillimeter galaxy magnification bias via $w(\theta)$ can be exploited as an independent cosmological probe!

Introduction

2 Data and methodology

- The foreground and background galaxy samples
- The cross-correlation function: measurement and modeling

8 Results

- Dependence on the β parameter
- The large-scale cross-correlation and G15
- Adding clustering

The background galaxy sample

The *Herschel*-ATLAS survey observed the NGP and SGP regions as well as three areas on the celestial equator (G09, G12 and G15)...

... at 70, 100, 160 (PACS), 250, 350 y 500 μ m (SPIRE)

The background galaxy sample

1.2 < z < 4.0

The foreground galaxy sample

The foreground sample is made up of sources from the spectroscopic GAMA II catalog such that

- they overlap with H-ATLAS-observed regions ($\sim 207 \text{ deg}^2$ (!))
- their (spectroscopic) redshift is

0.2 < z < 0.8

The foreground galaxy sample

Introduction

2 Data and methodology

- The foreground and background galaxy samples
- The cross-correlation function: measurement and modeling

8 Results

- Dependence on the β parameter
- The large-scale cross-correlation and G15
- Adding clustering

The estimator

Given the definition of the angular cross-correlation function,

$$w(\theta) \equiv \langle \delta n_{\rm f}(\phi) \delta n_{\rm b}(\phi + \theta) \rangle_{\phi},$$

how can we estimate this quantity?

The estimator

Given the definition of the angular cross-correlation function,

$$w(\theta) \equiv \langle \delta n_{\rm f}(\phi) \delta n_{\rm b}(\phi + \theta) \rangle_{\phi}$$
,

how can we estimate this quantity?

$$\tilde{w}(\theta) = \frac{D_{\rm f} D_{\rm b}(\theta) - D_{\rm f} R_{\rm b}(\theta) - D_{\rm b} R_{\rm f}(\theta) + R_{\rm f} R_{\rm b}(\theta)}{R_{\rm f} R_{\rm b}(\theta)}$$

- $D_{\rm f}D_{\rm b}$ is the number of data foreground data background pairs
- $D_{\rm f}R_{\rm b}$ is the number of data foreground random background pairs

Methodological aspects

We have four spatially-separated regions (G09, G12, G15 and SGP). We can measure the cross-correlation in each of them

$$\tilde{w}(\theta) = \bar{w}(\theta) \pm \sigma / \sqrt{n}$$

Cosmology from Home 2023

Methodological aspects

Or choose tiles ($\sim 4 \times 4 \text{ deg}^2$) or minitiles ($\sim 2 \times 2 \text{ deg}^2$) as the minimal areas over which to average! [Bonavera et al. (2021), González-Nuevo et al. (2021)]

However, the increase in n also carries a reduction of the maximum scale...

Methodological aspects

Or perform a global measurement and assign errors via Bootstrap subsampling [Cueli et al. (2023), González-Nuevo et al. (2023), submitted to A&A]

Methodological aspects

Or perform a global measurement and assign errors via Bootstrap subsampling [Cueli et al. (2023), González-Nuevo et al. (2023), submitted to A&A]

Cosmology enters directly in the weak lensing-based theoretical expression:

$$w(\theta) = 2(\beta - 1) \int_0^\infty \frac{dz}{f_K^2(\chi(z))} \, p_{z_{\mathbf{f}}}(z) W_z^{\mathrm{lens}}(z) \int_0^\infty \frac{dl}{2\pi} \, l \, P_{\mathbf{g}\text{-}\mathbf{m}}\left(\frac{l}{f_K(\chi(z))}, \chi(z)\right) J_0(l\theta)$$

We use the <u>halo model</u>, which gives an analytic description of the galaxy-matter power spectrum.

Cosmology enters directly in the weak lensing-based theoretical expression:

$$w(\theta) = 2(\beta - 1) \int_0^\infty \frac{dz}{f_K^2(\chi(z))} p_{z_{\mathbf{f}}}(z) W_z^{\mathsf{lens}}(z) \int_0^\infty \frac{dl}{2\pi} l P_{\mathbf{g}\text{-}\mathbf{m}}\left(\frac{l}{f_K(\chi(z))}, z\right) J_0(l\theta)$$

We use the <u>halo model</u>, which gives an analytic description of the galaxy-matter power spectrum. The free parameters are

• Cosmology within flat Λ CDM (Ω_m , σ_8 , h)

Cosmology enters directly in the weak lensing-based theoretical expression:

$$w(\theta) = 2(\beta - 1) \int_0^\infty \frac{dz}{f_K^2(\chi(z))} \, p_{z_{\mathbf{f}}}(z) W_z^{\mathrm{lens}}(z) \int_0^\infty \frac{dl}{2\pi} \, l \, P_{\mathbf{g}\text{-}\mathbf{m}}\left(\frac{l}{f_K(\chi(z))}, z\right) J_0(l\theta)$$

We use the <u>halo model</u>, which gives an analytic description of the galaxy-matter power spectrum. The free parameters are

- Cosmology within flat Λ CDM (Ω_m , σ_8 , h)
- Logarithmic slope of number counts (β)

Cosmology enters directly in the weak lensing-based theoretical expression:

$$w(\theta) = 2(\beta - 1) \int_0^\infty \frac{dz}{f_K^2(\chi(z))} \, p_{z_{\mathbf{f}}}(z) W_z^{\mathsf{lens}}(z) \int_0^\infty \frac{dl}{2\pi} \, l \, P_{\mathsf{g-m}}\!\left(\frac{l}{f_K(\chi(z))}, z\right) J_0(l\theta)$$

We use the <u>halo model</u>, which gives an analytic description of the galaxy-matter power spectrum. The free parameters are

- Cosmology within flat $\Lambda \text{CDM} (\Omega_m, \sigma_8, h)$
- Logarithmic slope of number counts (β)
- Halo Occupation Distribution (M_{\min} , M_1 and α)

$$\langle N \rangle_M = \langle N_c \rangle_M + \langle N_s \rangle_M = \Theta(M - M_{\min}) \left[1 + \left(\frac{M}{M_1} \right)^{\alpha} \right]$$

2 Data and methodology

• The foreground and background galaxy samples

• The cross-correlation function: measurement and modeling

8 Results

• Dependence on the β parameter

• The large-scale cross-correlation and G15 Adding clustering

The value of β had been commonly fixed to 3 in previous works (Lapi, A. et al. (2011) \ldots

 \ldots but the behavior "around" the detection limit needs to be captured

Marcos M. Cueli

The value of β mainly affects σ_8 and M_1 , while Ω_m is unaffected!

 $\log M_1/M_{\odot} = 12.24^{+0.65}_{-0.64}$ $\log M_1/M_{\odot} = 13.14^{+0.75}_{-0.73}$

$\sigma_8 = 0.77^{+0.05}_{-0.06}$	$\Omega_m = 0.21^{+0.0}_{-0.0}$	$\frac{2}{4}$
$\sigma_8 = 1.04^{+0.12}_{-0.06}$	$\Omega_m = 0.19^{+0.0}_{-0.0}$	$\frac{2}{4}$

If we compare with the constraints from González-Nuevo et al. (2021)...

Marcos M. Cueli

Cosmology from Home 2023

If we compare with the constraints from González-Nuevo et al. (2021)...

- Improvement in cosmological uncertainties (σ_8 and Ω_m)
- Discrepancies in halo masses (M_{\min} and M_1) and $\Omega_m...$
 - Integral constraint correction is relatively arbitrary
 - Q Average over "minitiles" washes out larger-scale inhomogeneities

If we compare with the data from González-Nuevo et al. (2021)...

Is the large-scale signal anomalous?

Introduction

2 Data and methodology

- The foreground and background galaxy samples
- The cross-correlation function: measurement and modeling

8 Results

- Dependence on the β parameter
- The large-scale cross-correlation and G15
- Adding clustering

Removing the G15 region weakens the signal on large scales!

What is the effect on parameter estimation?

Removing G15 mainly affects Ω_m and $\sigma_8!$ For $\beta = 2.2...$

$$\Omega_m = 0.19^{+0.02}_{-0.04} \qquad \sigma_8 = 1.04^{+0.12}_{-0.06}$$
$$\Omega_m = 0.30^{+0.05}_{-0.06} \qquad \sigma_8 = 0.92^{+0.07}_{-0.07}$$

Introduction

2 Data and methodology

- The foreground and background galaxy samples
- The cross-correlation function: measurement and modeling

8 Results

- Dependence on the β parameter
- The large-scale cross-correlation and G15
- Adding clustering

4 Conclusions

Results Adding clustering

We can also measure the angular clustering of the foreground sample

and describe it within the halo model

Results

Adding clustering

Excluding the G15 regions seems to be necessary for a good fit...

Results

Adding clustering

But the information about β is no longer necessary!

 $\Omega_m = 0.36^{+0.03}_{-0.07} \qquad \sigma_8 = 0.90^{+0.03}_{-0.03}$

• Magnification bias induces an excess of background galaxies around those in the foreground with respect to no lensing.

- Magnification bias induces an excess of background galaxies around those in the foreground with respect to no lensing.
- Submillimeter galaxies are an optimal background sample owing to their physical properties (e.g. steep number counts).

- Magnification bias induces an excess of background galaxies around those in the foreground with respect to no lensing.
- Submillimeter galaxies are an optimal background sample owing to their physical properties (e.g. steep number counts).
- The submillimeter galaxy magnification bias can be exploited as an independent and complementary cosmological probe:
 - Most sensitive to Ω_m and σ_8
 - No sign of the usual $\Omega_m-\sigma_8$ degeneracy
 - The β parameter is crucial for determining σ_8
 - Hints of an anomalous large-scale signal related to G15
 - $\bullet\,$ Galaxy clustering tightens constraints and eliminates the need for $\beta\,$ information

- Magnification bias induces an excess of background galaxies around those in the foreground with respect to no lensing.
- Submillimeter galaxies are an optimal background sample owing to their physical properties (e.g. steep number counts).
- The submillimeter galaxy magnification bias can be exploited as an independent and complementary cosmological probe:
 - Most sensitive to Ω_m and σ_8
 - No sign of the usual $\Omega_m-\sigma_8$ degeneracy
 - The β parameter is crucial for determining σ_8
 - Hints of an anomalous large-scale signal related to G15
 - $\bullet\,$ Galaxy clustering tightens constraints and eliminates the need for $\beta\,$ information
- Promising future with a larger area and tomographic analyses!