EFTofLSS

Mandar Karandikar

(Cristiano Porciani, Oliver Hahn)

Argelander-Institut für Astronomie

Investigating the assumptions of the

Cosmology from Home, 2023

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

[Millenium Simulation Project]

500 Mpc/h

[Millenium Simulation Project]

31.25 Mpc/h

Perturbation Theory (PT)

Assumption of PPF 1) Includes $k > k_{\rm NL}$ 2)

N-body simulations

Macroparticle assumption (1)Limited dynamic range 2)

Effective Field Theory of Large-Scale Structure [Baumann et al 2012, Carrasco et al 2012]

- 1. Introduce a cutoff scale Λ
- 2. Solve the coarse-grained equations
- 3. Dependence on $k > \Lambda$ encoded in unknown 'Wilson coefficients'

Goal: Address the shortcomings of PT and extend its reach

4. Parameter estimation is done by estimating the coefficients from data

Flavours of EFTs

Top-down

1) Small-scale physics is known

2) EFT coefficients are calculated from small-scale theory (for the EFTofLSS, we use N-body simulations)

1) Small-scale physics is unknown

2) EFT coefficients are calculated by matching observables to data

Motivation (Karandikar, Porciani, Hahn; in prep)

Design the simplest universe in which the bottom-up and top-down EFTs can be compared

Setup: 1D, Einstein de Sitter

long-wavelength mode

$$k = k_{\rm f}$$

short-wavelength mode $k = 11 k_{\rm f}$

superposition

sim_1_{11}

https://bitbucket.org/ohahn/cosmo_sim_1d

Coarse-grained equations

take momentum

moments

 $\frac{\mathrm{d}p p^n \frac{\mathrm{d}f_l}{\mathrm{d}t} = 0}{\mathrm{d}t}$

Coarse-grained equations

$\dot{\delta}_l + \frac{1}{a} \partial_x [(1 + \delta_l)u_l] = 0$

mass-conservation

 $\partial_{\mathbf{x}}^2 \phi_I = 4\pi G a^2 \bar{\rho} \delta_I$ gravitational coupling

 $\dot{u}_l + Hu_l + \frac{1}{a}u_l\partial_x u_l + \frac{1}{a}\partial_x \phi_l + \frac{1}{a\rho_l}\partial_x \tau = 0$

momentum-conservation

12

Effective stress

kinetic

 $\tau_k = \Xi_l - \rho_l u_l^2$

gravitational

$\tau_{g} = \frac{1}{8\pi Ga^{2}} \left\{ \left[(\partial_{x}\phi)^{2} \right]_{l} - \left(\partial_{x}\phi_{l} \right)^{2} \right\}$

EFTofLSS corrections

At the power spectrum level,

$P_{\rm EFT} = P_{11} + P_{12} + 2P_{13} + P_{22} + 2\alpha_c k^2 P_{11}$ tSPT-4

$\alpha_{c} = \frac{1}{a} \int_{0}^{a} \mathrm{d}a' G(a, a') c_{\mathrm{tot}}^{2}(a') a' \qquad G(a, a') = \frac{2}{5H_{0}^{2}} \left[\left(\frac{a'}{a}\right)^{3/2} - \frac{a}{a'} \right]$

(EdS)

Flavours of EFTs, revisited

Top-down

Estimate c_{tot}^2 from simulations, then calculate α_c

Take spatial correlations of τ 1) with δ_l, θ_l : SC 2) Fit measured τ with δ_l, θ_l : F3P

Bottom-up

Match the EFT and N-body spectrum to get α_c

$$\alpha_c = \frac{P_{N-\text{body}} - P_{\text{tSPT}-4}}{2k^2 P_{11}}$$

Results: Estimated c_{tot}^2

a_{shell}: shell-crossing times F3P: 3-parameter fit SC: estimate from spatial correlations

Results: α_c

a

top-down: dashed lines bottom-up: solid line

Results: Power in $k = k_{\rm f}$

Results: Dependence on separation of scales

• c_{tot}^2 deviates from linear evolution after shell crossing • The bottom-up and top-down estimators agree, providing a consistency check on the EFTofLSS • The EFT predictions are robust to changes in scale separation

The bottom-up and top-down estimators agree, providing a consistency check on the EFTofLSS

For more details, see: (Karandikar, Porciani, Hahn; in prep)

