Prompt cusps of dark matter halos M. Sten Delos Max Planck Institute for Astrophysics Cosmology from Home, 2023



**MAX PLANCK INSTITUTE** 

FOR ASTROPHYSICS

## Dark matter halos

- There is  $\sim 5$  times more dark matter than baryons
- Dark matter drives gravitational structure formation



MW mass model: Cautun et al (2020) picture of simulated MW-like galaxy: Grand et al (2021)

## Dark matter halos

#### Subhalos persist inside other halos:



#### Halos form at all scales:



## Halo density profiles

 $\rho(r)$ : shallow (logarithmic) decrease at small r, steep decrease at large r



...because all have the same formation mechanism: growth from a smaller halo (e.g. Ludlow et al 2013)

## The first halos

#### The first dark matter halos form from density peaks.



(smoothed by thermal motion)

Normally not resolved in simulations [~earth mass]

### "Prompt cusps"



 $t/t_c = 1.19$ 

#### Prompt cusp persistence



Outcome: standard DM density profile + prompt cusp

- Verified for a sample of other halos arising in a range of cosmologies
- Unsurprising: new material has too much *E*, *L* to disturb the center

#### What sets prompt cusp properties?



### What sets prompt cusp properties?



# Cusp properties from peaks

Twelve high-resolution halos from three power spectra: **Predictions [black] work well!** 





## Statistics of peaks



## What is dark matter?

Well motivated possibility: thermal relic dark matter particle  $\chi$ , pair-produced in the early universe.



Then dark matter can annihilate into detectable SM particles today!

Annihilation rate  $\propto \rho^2 \rightarrow {\rm boosted}$  by prompt cusps

## Prompt cusps and dark matter annihilation

#### Prompt cusp survival implies every halo and subhalo has one



Extreme density inside prompt cusps boosts the annihilation rate ( $\propto \rho^2$ )



Egalitarian: every halo, no matter its size, has (roughly) the same prompt cusp

## Annihilation in prompt cusps

Example: 100 GeV WIMP (decoupling at 30 MeV)

Statistics of peaks  $\,\Rightarrow\,\sim\,20000$  sub-earth-mass cusps per  $M_{\odot}$  of DM



## Annihilation in prompt cusps



Galactic cusps suppressed by tidal forces & stellar encounters per Stücker et al. (2023)

## Warm dark matter

Random particle motion smooths initial conditions



which suppresses the abundance of low-mass halos:



M. Sten Delos

#### Prompt cusps of warm dark matter



Initial density peaks are much larger
Prompt cusps are much larger



## Searching for WDM prompt cusps

#### We can search for prompt cusps within nearby dwarf galaxies:



Better constraints come from ultrafaints (Delos 2023), but plots don't look as nice

Inferred profiles from Hayashi et al. (2020)

# Summary

Gravitational collapse produces prompt  $\rho \propto r^{-1.5}$  cusps, which persist through halo growth.

- These features greatly impact DM annihilation. We expect an annihilation signal not only from the densest regions but from diffuse regions as well.
- If DM is warm, prompt cusps should affect galactic kinematics and potentially other observables.

