What Is JWST Telling Us about Early Galaxy Formation & Cosmology?

Lilan Yang* & Mike Boylan-Kolchin⁺ @Cosmologyfromhome2023

*Kavli IPMU, the University of TokyoDepartment of Astronomy, the University of Texas at Austin

Timeline of the Life

The diversity of life on Earth today is the result of **Universe evolution**

Timeline of the Universe

Key Questions

- 1.What are the first stars/galaxies?2.How did reionization occur? and what caused it?
- 3.Observed structures consistent with initial conditions?4.Physics beyond base ΛCDM?

Robertson 2022

Why JWST

galaxy cluster SMACS 0723, known as Webb's *First* Deep Field unveiled July 11, 2022

Lilan Yang & Mike Boylan-Kolchin

Near Infrared Spectrograph (NIRSpec): near-IR spectroscopy from 0.6–5.3 μm

Near Infrared Camera (NIRCam): offers imaging from 0.6–5.0 μm, coronagraphy, slitless spectroscopy

Mid-Infrared Instrument (MIRI): imaging and spectroscopic from ~ 5 to $28 \mu m$

Near Infrared Imager and Slitless Spectrograph (NIRISS): slitless spectroscopy, and imaging

Key Questions List

1.What are the first stars/galaxies?

2.How did reionization occur? and what caused it?

3.Observed structures consistent with initial conditions? 4.Physics beyond base ΛCDM?

First look by Webb

GLASS-JWST Early Release Science (PI:Tommaso Treu)

"In 2017, thirteen "Early Release Science" (ERS) Programs were selected with the goal of collecting as quickly as possible public datasets that would showcase the power of JWST while enabling a full characterization of its instrument suite."

Treu **Yang** et al, 2022

Lilan Yang & Mike Boylan-Kolchin

Dropout technique & SED Fitting

searching for the high-z galaxies

Dropout technique:

large break occurs at the **912-1216** Å (Lyman limit-Lyman alpha) from **neutral hydrogen absorption** in the line-of-sight

Spectral energy distributions (SED):

Estimating galaxies's properties, such as stellar mass, dust attenuation etc

Discovery 2 bright early galaxies

With just <u>4 days</u> of analysis

Milky Way: ~13 kpc, Magnitude ~ -21.3

Castellano ..., **Yang**, et al. 2022 **Yang** et al.2022

Lilan Yang & Mike Boylan-Kolchin

Discovery 1 ultra-faint early galaxy

With gravitational lensing

Lensed image is reconstructed by Lenstruction, Yang et al 2020

Spectroscopically redshift z=13.20

JWST ADVANCED DEEP EXTRAGALACTIC SURVEY (JADES) WEBB SPECTRA REACH NEW MILESTONE IN REDSHIFT FRONTIER

JADES-GS-z13-0 spectroscopically confirmed redshift 13.20

Key Questions List

1.What are the first stars/galaxies?

2.How did reionization occur? and what caused it?

3.Observed structures consistent with initial conditions? 4.Physics beyond base ΛCDM?

Galaxies Transformed the Early Universe

Credits: NASA, ESA, CSA, Joyce Kang (STScI)

Determine the shape of UVLF

Correcting selection bias

Distance

preferential detection of intrinsically **bright** objects

higher surface brightness

Given luminosity, **smaller size** are easier to be observed

UVLF using JWST data

Updated of UVLF at bright-end

Harikane et al.2023

UVLF using JWST data

Updated of UVLF at bright-end

See also Bouwens et al. 2022; Donnan et al. 2023; Finkelstein et al. 2022; Naidu et al. 2022

The first optical band Size-L relation

Updated of size-L at bright-end

Yang et al. 2022

Sizes of early galaxies z~7-13

Faint galaxies observed via strong lensing

red points are Hubble lensed galaxies

Overview of UV luminosity function

Lilan Yang & Mike Boylan-Kolchin

Key Questions List

1.What are the first stars/galaxies?

2.How did reionization occur? and what caused it?

3. Observed structures consistent with initial conditions? 4. Physics beyond base ΛCDM ?

$$\begin{split} \langle \delta_{\rm T}^2 \rangle^{1/2} &\sim 10^{-5} \\ \rho_{\rm b}, \rho_{\rm c}, n_{\rm s}, A_{\rm s}, \theta_{\star}, \tau \end{split}$$

 $\langle \delta_{\rm T}^2 \rangle^{1/2} \sim 10^{-5} \\ \rho_{\rm b}, \rho_{\rm c}, n_{\rm s}, A_{\rm s}, \theta_{\star}, \tau$

z = 127

 $\langle \delta_{\rm T}^2 \rangle^{1/2} \sim 10^{-5} \\ \rho_{\rm b}, \rho_{\rm c}, n_{\rm s}, A_{\rm s}, \theta_{\star}, \tau$

z = 127

Lilan Yang & Mike Boylan-Kolchin

From density fluctuations to dark matter halos

From density fluctuations to dark matter halos

Observations

Theory

$$\phi_{\rm UV} \equiv \frac{\mathrm{d}n}{\mathrm{d}M_{\rm UV}} = \int \mathrm{d}M_{\rm h} \frac{\mathrm{d}n}{\mathrm{d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$

$$\phi_{\rm UV} \equiv \frac{\mathrm{d}n}{\mathrm{d}M_{\rm UV}} = \int \mathrm{d}M_{\rm h} \frac{\mathrm{d}n}{\mathrm{d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$

UV luminosity function

$$\phi_{\rm UV} \equiv \frac{\mathrm{d}n}{\mathrm{d}M_{\rm UV}} = \int \mathrm{d}M_{\rm h} \frac{\mathrm{d}n}{\mathrm{d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$

UV luminosity function

Halo mass function

$$\phi_{\rm UV} \equiv \frac{{\rm d}n}{{\rm d}M_{\rm UV}} = \int {\rm d}M_{\rm h} \frac{{\rm d}n}{{\rm d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$
UV luminosity function
Halo mass galaxy formation
function
by sics

$$\phi_{\rm UV} \equiv \frac{{\rm d}n}{{\rm d}M_{\rm UV}} = \int {\rm d}M_{\rm h} \frac{{\rm d}n}{{\rm d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$
UV luminosity function
Halo mass function
galaxy formation
physics

$$\phi_{\rm UV} \equiv \frac{\mathrm{d}n}{\mathrm{d}M_{\rm UV}} = \int \mathrm{d}M_{\rm h} \frac{\mathrm{d}n}{\mathrm{d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$

galaxy formation physics

$$\dot{M}_{\star} = f_{\star}(z, M_{\rm h}) f_{\rm b} \dot{M}_{\rm h}$$

$$\phi_{\rm UV} \equiv \frac{\mathrm{d}n}{\mathrm{d}M_{\rm UV}} = \int \mathrm{d}M_{\rm h} \frac{\mathrm{d}n}{\mathrm{d}M_{\rm h}} P(M_{\rm UV}|M_{\rm h})$$

galaxy formation physics

$$\dot{M}_{\star} = f_{\star}(z, M_{\rm h}) f_{\rm b} \dot{M}_{\rm h}$$

Pre-JWST expectations

Steep fall-off in star formation toward higher redshift

Harikane et al. 2022

 \sim

JWST: surprising levels of \tilde{h} igh-redshift star formation

Harikane et al. 2022, 2023

JWST: surprising levels of \tilde{h} igh-redshift star formation

JWST: surprising levels of high-redshift star formation

Harikane et al. 2023

JWST: surprising levels of high-redshift star formation

Galaxy candidates with $M_{\star} \approx 10^{10-11} M_{\odot}$ at $z \sim 8-10$ from CEERS

Galaxy candidates with $M_{\star} \approx 10^{10-11} M_{\odot}$ at $z \sim 8-10$ from CEERS

Galaxy candidates with $M_{\star} \approx 10^{10-11} M_{\odot}$ at $z \sim 8-10$ from CEERS

Galaxies with $M_{\star} \approx 10^{10-11} M_{\odot}$ at $z \sim 8 - 10$ imply *thousands* of times more stars per unit volume than expected based on *HST* results

Massive early galaxies: in tension with ACDM

Uh oh: require *all* available baryons in the halo to be converted into stars in Λ CDM (i.e., $\epsilon_{\star} \approx 1$). *Note*: at z = 0, $\langle \epsilon_{\star} \rangle \leq 0.2$ at all halo masses

JWST: massive early galaxies at early cosmic times

Galaxy candidates with $M_{\star} \approx 10^{10.5-11} M_{\odot}$ at $z \sim 8-10$ from CEERS

JWST: massive early galaxies at early cosmic times

Galaxy candidates with $M_{\star} \approx 10^{10.5-11} M_{\odot}$ at $z \sim 8-10$ from CEERS

JWST: massive early galaxies at early cosmic times

Massive dust-obscured galaxies (with ALMA detections)?

What could be going on ?

Many possible explanations within standard ACDM, including incorrect mapping from observed light to underlying stellar mass (AGN, star formation histories,) and sample variance

What could be going on ?

Many possible explanations within standard ACDM, including incorrect mapping from observed light to underlying stellar mass (AGN, star formation histories,) and sample variance

If the issue is cosmological: need more (faster) formation of cosmological structure at early times. No wiggle room in base Λ CDM — all parameters are known to $\leq 1 \%$ precision — but extensions with additional parameters might work

- need higher $\rho_{\rm m}, \sigma_8,$ and/or $n_{\rm s}$
- a small(ish) possible modification: a short period of **early dark energy** with $\Omega_{EDE} \sim 0.1$ at $z \sim 3500$ (Kanvalue 2016: Pouline e 2018, 2010: Smither 2020, Piece & Kamionkowski 2022)

(Karwal++ 2016; Poulin++ 2018, 2019; Smith++ 2020, Riess & Kamionkowski 2022)

EDE leads to enhanced high-z structure formation

higher $\rho_{\rm m},\sigma_{\rm 8},~\&~n_{\rm s}$ than base Planck model: more high-z galaxies (Klypin et al. 2021)

Bullock & Boylan-Kolchin 2017

Bullock & Boylan-Kolchin 2017

Bullock & Boylan-Kolchin 2017

Dayal & Giri 2023

Hirano & Yoshida 2023

Lilan Yang & Mike Boylan-Kolchin

Lilan Yang & Mike Boylan-Kolchin

Lilan Yang & Mike Boylan-Kolchin

Programs relevant for galaxies and cosmology

Robertson 2022

The COSMOS-Web survey

the biggest survey

discover thousands of galaxies in the Epoch of Reionization

Casey Yang, et al. 2022

Summary

What are the first stars/galaxies?
 How did reionization occur? and what caused it?

@Cosmologyfromhome2023

 $M_{
m halo} \, [M_\odot]$