

Structure formation in an anisotropic universe: Eulerian perturbation theory^{#1}

J. P. Beltrán Almeida, <u>J. Motoa-Manzano</u>, J. Noreña, T.S. Pereira & C. A. Valenzuela-Toledo

CFH 2023

#1 based on JCAP02(2022)018

josue.motoa@correounivalle.edu.co

Josué Motoa Manzano

Some Motivations	Generalities	The Euler and continuity equations \circ	Linear and non-linear solutions	Summary O

Motivations

- Despite the great observational efforts there is still doubt about the nature of dark energy.
- Our best model so far is Λ CDM, but it has some tension.
- It is of interest to test the assumtions made on Λ CDM.
- Testing the cosmological principle could be a good avenue to solve some tensions.

Some Motivations	Generalities	The Euler and continuity equations	Linear and non-linear solutions	Summary
0	•00	0	00	0

The approximations

Main objective

To study the LSS in the context of an homogeneous but anisotropic bianchi I metric.

The main assumptions

- We work in the Newton approximation.
- 2 We assume a small shear approximation.

We assume a small field big spatial derivative approximation.

Generalities

The Euler and continuity equations o

Linear and non-linear solutions

Summary o

The background

Bianchi I metric

$$ds^2 = a^2(\eta) [-d\eta^2 + \gamma_{ij}(\eta) dx^i dx^j].$$

Fluid continuity equations

$$\rho'_m + 3\mathcal{H}\rho_m = 0,$$

$$\rho'_{de} + 3\mathcal{H}(\rho_{de} + p_{de}) = -\sigma_{ij}\pi^{ij}$$

The geometric shear

$$\sigma_{ij} = \frac{1}{2} \gamma'_{ij} , \quad \sigma^2 \equiv \sigma^{ij} \sigma_{ij}.$$

Einstein equations

$$3\mathcal{H}^2 - \frac{1}{2}\sigma^2 = (\rho_m + \rho_{de})a^2,$$

$$(\sigma^i_j)' + 2\mathcal{H}\sigma^i_j = a^2\pi^i_j.$$

Some Motivations	Generalities	The Euler and continuity equations	Linear and non-linear solutions	Summary
0	000	0	00	0

Perturbation theory

The perturbed Bianchi I metric

$$ds^{2} = a^{2} \left[-(1+2\phi)d\eta^{2} + 2\omega_{i}dx^{i}d\eta + (\gamma_{ij} + h_{ij})dx^{i}dx^{j} \right].$$

The perturbations

$$h_{ij} \equiv -2\psi \left(\gamma_{ij} + \frac{\sigma_{ij}}{\mathcal{H}}\right) + 2\tau_{ij},$$

$$\partial^i \omega_i = \tau^i_{\ i} = 0 = \partial^i \tau_{ij}.$$

The Newtonian limit

$$\begin{split} k^2 \phi &= -\frac{3}{2} a^2 H^2 \delta\,,\\ v_i &= -\frac{k_i \phi}{a H}. \end{split}$$

The order of perturbations			
	Variable	$n \text{ in } \mathcal{O}(\epsilon^n)$	
Derivatives	∂_i/aH	-1/2	
	ρ, δ, θ	0	
Fluid	v	1	
	v_i	1/2	
	ϕ,ψ	1	
Metric	ω_i	3/2	
	$ au_{ij}$	1	

josue.motoa@correounivalle.edu.co

Josué Motoa Manzano

The continuity equations for the matter perturbations

the continuity equations

$$\nabla_{\mu}[\rho_m(1+\delta)u^{\mu}] = 0,$$
$$u^{\nu}\nabla_{\nu}u^{\mu} = 0.$$

Continuity and Euler equations

$$\delta' + \theta(1+\delta) + v^i \partial_i \delta = 0,$$

$$\theta' + \mathcal{H}\theta + \partial_i (v^j \partial_j v^i) + \frac{3}{2} \Omega_m \mathcal{H}^2 \delta = -2\sigma^{ij} \partial_i v_j.$$

josue.motoa@correounivalle.edu.co

Some Motivations	Generalities	The Euler and continuity equations	Linear and non-linear solutions	Summary
0	000	0	•0	0

Linear solutions

Linear matter contrast equation

$$\delta_1''(\eta,\mathbf{k}) + \mathcal{H}\delta_1'(\eta,\mathbf{k}) - \frac{3}{2}\mathcal{H}^2\Omega_m\delta_1(\eta,\mathbf{k}) = -2\sigma_{\parallel}(\eta,\mathbf{k})\delta_1'(\eta,\mathbf{k}) \,.$$

Linear and non-linear solutions

Summary o

Non-linear solutions

Non-linear equations

$$\begin{split} \delta_2'(\eta, \mathbf{k}) &+ \theta_2(\eta, \mathbf{k}) = -\alpha[\theta_1, \delta_1], \\ \theta_2'(\eta, \mathbf{k}) &+ \left[\mathcal{H} + 2\sigma_{\parallel}(\eta, \mathbf{k})\right] \theta_2(\eta, \mathbf{k}) + \frac{3}{2} \mathcal{H}^2 \Omega_m \delta_2(\eta, \mathbf{k}) = -\beta[\theta_1, \theta_1]. \end{split}$$

Solutions split

$$\begin{split} \delta_1 &= \delta_1^{(\mathrm{iso})} + \Delta_1 \,, \\ \delta_2 &= \delta_2^{(\mathrm{iso})} + \Delta_2 \,. \end{split}$$

Anisotropic contribution to the non-linear solution

$$\Delta_2(a,\mathbf{k}) = \int \frac{d^3q}{(2\pi)^3} F_2^{\sigma}(a,\mathbf{q},\mathbf{k}-\mathbf{q}) \delta_l(\mathbf{q}) \delta_l(\mathbf{k}-\mathbf{q}) \,.$$

josue.motoa@correounivalle.edu.co

Some Motivations o	Generalities	The Euler and continuity equations $\ensuremath{\circ}$	Linear and non-linear solutions	Summary •
Summary	/			

- We computed the Euler and continuity equations to the matter perturbations in an anasitropic background.
- We solved the equations to linear and non-linear order.
- We showed that a small deviation from isotropy can leave a signature in the matter power spectrum.
- However, the signal must be disentangled from the quadrupole in the redshift-space distortions.