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Background

e Galaxy Clusters are the most massive gravitationally bound objects in the
Universe

e They are a useful probe of both dark matter physics and cosmology

e Have areas of active research that require further observation to resolve
o Mass estimation bias
o Core-cooling




Outstanding Questions

e Mass Estimation Bias

Mass abundances of galaxy clusters useful for constraining cosmology (Pratt+19)
X-ray observations provide low-scatter mass estimates (e.g., Kravtsov+06)

Reliant on mass proxies, introduce bias (e.g., Shi+15)

Dynamical state important source of mass estimate bias
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Outstanding Questions

e Cluster populations show different behaviors in the core (cool vs non-cool)
(e.g., Inoue+22)
o  Further observations would improve understanding




Motivation

e ¢cROSITA will observe many more Galaxy Clusters (Merloni+12)

e Follow-up observations with higher spatial resolution longer duration
instruments is essential

e Follow-up is expensive

e Need atool to evaluate the merit of follow-up




Follow-Up Merit Assessment Tool

e Want to predict follow-up observations while preserving parameters of
interest

e Morphology correlated to galaxy cluster dynamical state (e.g., Rasia+13), core
type (e.g., Santos+08), and mass (e.g., Green+19)
e Focus on preserving cluster morphology (Green+19):
o Concentration

o Asymmetry
o  Smoothness




Morphology Parameters

e Concentration
o Ratio of interior flux to total flux

C B F(T‘ S 1 x R5OOC)
F(r < Rsooc)

e Asymmetry
o  Difference between image and rotation, normalized by total flux

A= F(|X — Xis0|;7 < Rs00c)
F(X;r < Rs00c)

e Smoothness
o  Difference between image and smoothed image, normalized by total flux
g F(IX — X|;7 < Rsooc)
F(X;r < Rso0c)




Data

e Galaxy clusters simulated by Magneticum simulation (Dolag+16)
o  WMAP yr 7 cosmology (Komatsu+11)
o 3285 clusters
o 3E13<M_500c<1.17E15
o 0.07<z<047

e Mock observations made using PHOX algorithm (Biffi+12, +13)
o 10 Mpc depth, 9.6" square pixels
o 3-bandimage (0.5-1.2 keV, 1.2-2.0 keV, 2.0-7.0 keV)
o 2ks and 10ks observations

e Observation made eROSITA-like using SIXTE (Dauser+19)

o Instrument Response
o Background




Model

Source:
https://stackoverflow.com/questions/52067833/how-to-plot-an-a
nimated-matrix-in-matplotlib

e Convolutional Neural Network
o Machine learning model variant that preserves spatial
relationship of pixels, allowing for faster learning
e Novel architecture

o Different kernel sizes to examine relevant lengths
scales in parallel
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Training

e Inputs: eROSITA-like Observations

o Background
o Instrument response
o 2ks observing time
e Truths: Idealized Observations
o No background
o No instrument response
o 10ks observing time
e Morphology Loss function
o Pixel MAE + Fixed Morphology MAE




Fixed Morphology Parameters

e Concentration
o Ratio of interior flux to total flux

o Flr<10)
e Asymmetry F(r < 100)
o  Difference between image and rotation, normalized by total flux
4 = FUX — Xag0])
e Smoothness F(X)

o  Difference between image and smoothed image, normalized by total flux

F(X - X|)
°=TFX




Results

Compare Cluster Morphologies Calculated from:

e Truth: 10 ks observation
o Observation type used as truths in CNN training

e eROSITA: eROSITA-like 2ks observations

o Observation type used as inputs in CNN training

e eROSITA-NR: Background subtracted eROSITA-like 2ks observations

o A simple alternative non-machine learning method for comparison
e Prediction: CNN model outputs
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Concentration: Soft X-rays
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Asymmetry: Soft X-rays Asymmetry: Medium X-rays Asymmetry: Hard X-rays
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Smoothness: Medium X-rays Smoothness: Hard X-rays
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Domain Shift

e Models trained on simulated data are biased when applied to real data
o Differences between simulations and reality bias model predictions (Amodei+16)
e Potential solution using transfer learning

o Additional train on pairs of real cluster observations (eROSITA & Follow-up) can make model
more robust to domain shift
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Summary

e Galaxy clusters are important probes of cosmology and laboratories of
astrophysics
e Outstanding questions remain regarding galaxy cluster dynamical state and

core cooling
o Follow-ups of soon-to-be-released data are essential to answer these questions, but follow-up
is expensive

e Prediction of morphologically accurate, long-duration, background-free
galaxy cluster observations is possible with deep learning
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