Analytic Covariance Matrices for N-Point Correlation Functions Jessica Chellino Advised by Zachary Slepian Cosmology from Home July 2023

N-Point Correlation Functions (NPCFs)

Background and Motivation

Covariance Matrix

- Obtained from mock catalogs
- Challenge: high dimensionality of observables
- Need several mocks per degree of freedom for smoothly invertible matrix
- Gaussian random field (GRF) limit
- Analytic covariance based on leading order result

Power Spectrum P(k)

- Traces clustering of matter as a function of scale
- Fourier transform of 2PCF
- Analytic covariance requires integrals of $P(k)$
- Analytic solution to integrals allows for better understanding of the structure of the covariance

Outline for Determining Analytic Covariance Matrices

A Model for the Power Spectrum

- Model: $P(k)=\frac{A}{k}+\frac{1}{\bar{n}}$
- $A=509 \mathrm{Mpc}^{2}, \bar{n}=3 \times 10^{-4} \mathrm{Mpc}^{-3}$
- True P(k) from CAMB
- Planck 2018: $H_{0}=67.36 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}, \Omega_{b} h^{2}=0.02237, \Omega_{c} h^{2}=0.1200, n_{s}=0.9649$

A Model for the Power Spectrum

- Covariance requires integrating $\mathrm{P}(\mathrm{k})$ against $k^{2} d k$
- $\frac{d}{d k}(\ln k)=\frac{1}{k} \rightarrow k^{2} d k=k^{3} d(\ln k)$

Half-Inverse Test

- Data weighted by inverse covariance
- Half-inverse test:

$$
S \equiv C_{\text {model }}^{-1 / 2} C_{\text {true }} C_{\text {model }}^{-1 / 2}-\mathbb{1}
$$

- Numerically determine 2PCF covariance from model and true power spectra:

$$
C_{i j}=\frac{2}{V} \int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}} \Delta j_{1}\left(k r_{i}\right) \Delta j_{1}\left(k r_{j}^{\prime}\right) P^{2}(k)
$$

$$
\Delta j_{1}\left(k r_{i}\right)=\left(\frac{3}{r_{i 2}^{3}-r_{i 1}^{3}}\right) \frac{r_{i 2}^{2} j_{1}\left(k r_{i 2}\right)-r_{i 1}^{2} j_{1}\left(k r_{i 1}\right)}{k} \quad \text { Xu et al. } 2012
$$

- Separations from 0 Mpc to 200 Mpc , bin width $=10 \mathrm{Mpc}, \mathrm{V}=2$ cubic Gpc

Half-Inverse Test

(a) $\bar{n}=10^{-4} \mathrm{Mpc}^{-3}, \mathrm{RMS}=3.22 \%$

(d) $\bar{n}=3 \times 10^{-3} \mathrm{Mpc}^{-3}, \mathrm{RMS}=9.76 \%$

(b) $\bar{n}=3 \times 10^{-4} \mathrm{Mpc}^{-3}, \mathrm{RMS}=5.43 \%$

(e) $\bar{n}=10^{-2} \mathrm{Mpc}^{-3}, \mathrm{RMS}=10.5 \%$

(c) $\bar{n}=10^{-3} \mathrm{Mpc}^{-3}, \mathrm{RMS}=8.19 \%$

(f) $\bar{n}=\infty \mathrm{Mpc}^{-3}, \mathrm{RMS}=10.8 \% 8$

Analytic Covariance Matrix for 2PCF

$$
\begin{gathered}
\operatorname{Cov}\left(r, r^{\prime}\right)=\frac{2}{V} \int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}} j_{0}(k r) j_{0}\left(k r^{\prime}\right) P^{2}(k) \text { xuetal. } 2012 \\
P(k)=\frac{A}{k}+\frac{1}{\bar{n}} \\
\operatorname{Cov}\left(r, r^{\prime}\right)=\frac{1}{\pi^{2} V} \int_{0}^{\infty} k^{2} d k j_{0}(k r) j_{0}\left(k r^{\prime}\right)\left[\left(\frac{A}{k}\right)^{2}+\frac{2 A}{\bar{n} k}+\frac{1}{\bar{n}^{2}}\right]^{\mathbf{r}} \\
\operatorname{Cov}\left(r, r^{\prime}\right)=\frac{1}{\pi^{2} V r r^{\prime}}\left[\frac{\pi A^{2}}{2} r+\frac{2 A}{\bar{n}} \tanh ^{-1}\left(\frac{r}{r^{\prime}}\right)+\frac{\pi}{2 \bar{n}^{2}} \delta_{\mathrm{D}}^{[1]}\left(r-r^{\prime}\right)\right]
\end{gathered}
$$

Analytic Covariance Matrix for 3PCF

- Legendre basis (Slepian and Eisenstein 2015)
${ }^{\bullet} \quad$ Isotropic basis: $\operatorname{Cov}_{\ell, \ell^{\prime}}\left(r_{1}, r_{2} ; r_{1}^{\prime}, r_{2}^{\prime}\right)=(4 \pi)^{3} \sum_{\ell^{\prime \prime}} \sqrt{(2 \ell+1)\left(2 \ell^{\prime}+1\right)}\left(2 \ell^{\prime \prime}+1\right)\left(\begin{array}{ccc}\ell & \ell^{\prime} & \ell^{\prime \prime} \\ 0 & 0 & 0\end{array}\right)^{2}$

2PCF From P(k) Model

- 2PCF is the inverse Fourier transform of the power spectrum

$$
\begin{gathered}
\xi(s)=\int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}} P(k) j_{0}(k s) \\
P(k)=\frac{A}{k}+\frac{1}{\bar{n}} \\
\xi(s)=\frac{A}{2 \pi^{2} s^{2}}+\frac{1}{4 \pi \bar{n} s^{2}} \delta_{\mathrm{D}}^{[1]}(s)
\end{gathered}
$$

f-Integrals

$$
\begin{aligned}
& f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right) \equiv \int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}} P(k) j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s) \\
& f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right)=\int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}}\left(\frac{A}{k}+\frac{1}{\bar{n}}\right) j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s)
\end{aligned}
$$

- Two cases needed for covariance of 3PCF: $f_{0, \ell, \ell}\left(0, r_{j}, s\right)$ and $f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}, s\right)$
- First case:

$$
f_{0, \ell, \ell}\left(0, r_{j}, s\right)=\int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}}\left(\frac{A}{k}+\frac{1}{\bar{n}}\right) j_{\ell}\left(k r_{j}\right) j_{\ell}(k s)
$$

$$
\begin{aligned}
f_{0, \ell, \ell}\left(0, r_{j}, s\right)= & \frac{1}{4 \pi^{2}}\left[\frac{A \sqrt{\pi}\left(r_{j} s\right)^{\ell} \Gamma(\ell+1)}{\left(r_{j}+s\right)^{2(\ell+1)} \Gamma(\ell+3 / 2)}{ }_{2} F_{1}\left(\ell+1, \ell+1 ; 2(\ell+1) ; \frac{4 r_{j} s}{\left(r_{j}+s\right)^{2}}\right)\right. \\
& \left.+\frac{\pi}{\bar{n} r_{j} s} \delta_{\mathrm{D}}^{[1]}\left(r_{j}-s\right)\right]
\end{aligned}
$$

f-Integrals

- Second case: $f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right) \equiv \int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}} P(k) j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s)$

$$
f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right)=\int_{0}^{\infty} \frac{k^{2} d k}{2 \pi^{2}}\left(\frac{A}{k}+\frac{1}{\bar{n}}\right) j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s)
$$

- Define two new integrals:

$$
\begin{aligned}
I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \operatorname{lin}]}\left(r_{i}, r_{j}^{\prime}, s\right) & \equiv \int_{0}^{\infty} k d k j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s) \\
I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \text { quad }]}\left(r_{i}, r_{j}^{\prime}, s\right) & \equiv \int_{0}^{\infty} k^{2} d k j_{\ell}\left(k r_{i}\right) j_{\ell^{\prime}}\left(k r_{j}^{\prime}\right) j_{\ell^{\prime \prime}}(k s)
\end{aligned}
$$

- Rewrite fintegral as

$$
f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right)=\frac{1}{2 \pi^{2}}\left[A I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \operatorname{lin}]}\left(r_{i}, r_{j}^{\prime}, s\right)+\frac{1}{\bar{n}} I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \text { quad }]}\left(r_{i}, r_{j}^{\prime}, s\right)\right]
$$

f-Integrals

$$
I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \text { quad }]}\left(r_{i}, r_{j}^{\prime}, s\right)=\frac{\pi}{2} W_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}\right) s^{2 b-\ell^{\prime \prime}-1}
$$

$$
\begin{aligned}
W_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}\right) \equiv & \frac{1}{2 r_{i} r_{j}^{\prime}} i^{\ell+\ell^{\prime}-\ell^{\prime \prime}} \sqrt{2 \ell^{\prime \prime}+1} r_{i}^{\ell^{\prime \prime}}\left(\begin{array}{ccc}
\ell & \ell^{\prime} & \ell^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)^{-1} \sum_{\mathcal{L}=0}^{\ell^{\prime \prime}}\binom{2 \ell^{\prime \prime}}{2 \mathcal{L}}^{1 / 2}\left(\frac{r_{j}^{\prime}}{r_{i}}\right)^{\mathcal{L}} \sum_{m}(2 m+1) \\
& \times\left(\begin{array}{ccc}
\ell & \ell^{\prime \prime}-\mathcal{L} & m \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell^{\prime} & \mathcal{L} & m \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
\ell & \ell^{\prime} & \ell^{\prime \prime} \\
\mathcal{L} & \ell^{\prime \prime}-\mathcal{L} & m
\end{array}\right\} 2^{-m} \sum_{a=0}^{\lfloor m / 2\rfloor}(-1)^{a}\binom{m}{a} \\
& \times\binom{ 2(m-a)}{m}\left(2 r_{i} r_{j}^{\prime}\right)^{2 a-m} \sum_{b=0}^{m-2 a}\binom{m-2 a}{b}\left(r_{i}^{2}+r_{j}^{\prime 2}\right)^{m-2 a-b}(-1)^{b}
\end{aligned}
$$

$$
f_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}, s\right)=\frac{1}{2 \pi^{2}}\left[A I_{\ell, \ell^{\prime}, \ell^{\prime \prime}}^{[3, \operatorname{lin}]}\left(r_{i}, r_{j}^{\prime}, s\right)+\frac{\pi}{2 \bar{n}} W_{\ell, \ell^{\prime}, \ell^{\prime \prime}}\left(r_{i}, r_{j}^{\prime}\right) s^{2 b-\ell^{\prime \prime}-1}\right]
$$

4PCF

Analytic Covariance Matrix for 4PCF: Case I

$$
\begin{aligned}
\operatorname{Cov}_{\Lambda, \Lambda^{\prime}}^{(\mathrm{fc}), \mathrm{I}}\left(R, R^{\prime}\right)= & (4 \pi)^{4} \sum_{G}(-1)^{\Sigma(\Lambda)\left(1-\mathcal{E}_{G}\right) / 2} \sum_{L_{1} L_{2} L_{3}} \mathcal{D}_{L_{1} L_{2} L_{3}}^{\mathrm{P}} \mathcal{C}_{000}^{L_{1} L_{2} L_{3}}\left\{\begin{array}{ccc}
\ell_{G 1} & \ell_{G 2} & \ell_{G 3} \\
\ell_{1}^{\prime} & \ell_{2}^{\prime} & \ell_{3}^{\prime} \\
L_{1} & L_{2} & L_{3}
\end{array}\right\} \\
& \times \prod_{i=1}^{3}\left[(-1)^{\left(-\ell_{G i}-\ell_{i}^{\prime}+L_{i}\right) / 2} \mathcal{D}_{\ell_{i} \ell_{i}^{\prime} L_{i}}^{\mathrm{P}} \mathcal{C}_{000}^{\ell_{G i} \ell_{i}^{\prime} L_{i}} \int \frac{s^{2} d s}{V} \xi(s) f_{\ell_{G i} \ell_{i}^{\prime} L_{i}}\left(r_{G i}, r_{i}^{\prime}, s\right)\right.
\end{aligned}
$$

Analytic Covariance Matrix for 4PCF: Case II

$\operatorname{Cov}_{\Lambda, \Lambda^{\prime}}^{(\mathrm{fc}), \mathrm{II}}\left(R, R^{\prime}\right)=(4 \pi)^{4} \sum_{G, H}(-1)^{\Sigma\left(\Lambda^{\prime}\right)\left(1-\mathcal{E}_{H}\right) / 2} \sum_{L_{1} L_{2} L_{3}} \mathcal{D}_{L_{1} L_{2} L_{3}}^{P} \mathcal{C}_{000}^{L_{1} L_{2} L_{3}}\left\{\begin{array}{ccc}\ell_{G 1} & \ell_{G 2} & \ell_{G 3} \\ \ell_{H 1}^{\prime} & \ell_{H 2}^{\prime} & \ell_{H 3}^{\prime} \\ L_{1} & L_{2} & L_{3}\end{array}\right\}$
$\times \prod^{3}\left[(-1)^{\left(-\ell_{G i}-\ell_{H i}^{\prime}+L_{i}\right) / 2} \mathcal{D}_{\ell_{G i} \ell_{H i}^{\prime} L_{i}} \mathcal{C}_{000}^{\ell_{G i} \ell_{H i}^{\prime} L_{i}}\right]$
$\times \sqrt{\int \frac{s^{2} d s}{V} f_{\ell_{G 1} 0 \ell_{G 1}}\left(r_{G 1}, 0, s\right) f_{0 \ell_{H 1}^{\prime} \ell_{H 1}^{\prime}}\left(0, r_{H 1}^{\prime}, s\right) f_{\ell_{G 2} \ell_{H 2}^{\prime} L_{2}}\left(r_{G 2}, r_{H 2}^{\prime}, s\right) f_{\ell_{G 3} \ell_{H 3}^{\prime} L_{3}}\left(r_{G 3}, r_{H 3}^{\prime}, s\right), ~}$

Summary

Completed Work

Future Work

- Accurately modeled $P(k)$
- Numerically determined covariance of 2PCF
- Determined analytic covariance of 2PCF from $\mathrm{P}(\mathrm{k})$ model
- Finish solving f-integrals
- Determine analytic covariance of 3PCF and 4PCF from $\mathrm{P}(\mathrm{k})$ model

