As Good As It Gets

Towards the best understood H_0 from strong gravitational lensing

Jenny Wagner

Probes of H_0 are probes of cosmic distances

Comoving distance:

$$D_{\rm com}(z) = \frac{c}{H_0} \int_0^z \frac{\mathrm{d}x}{E(x)}$$

all-sky observation

- foreground subtraction
- sound wave scale from power spectrum
- \rightarrow cosmology-depend. H_0

Cepheid+SN

- local neighbourhood
- different classes
- pulse-luminosity relation
 - \rightarrow "local" H_0

Strong grav. lensing

- wide redshift range
- various probes
- only based on weak light deflection
- \rightarrow optimum H_0 ?!

H_0 from strong gravitational lensing

$$\begin{split} t_A - t_B &= \frac{(1+z_1)}{c} \frac{D_1 D_s}{D_{1s}} \left[\phi_A - \phi_B \right] \propto \frac{1}{H_0} \\ \phi_A - \phi_B &= \frac{1}{2} \left(\boldsymbol{x}_A - \boldsymbol{x}_B \right)^\top \left(\boldsymbol{\alpha}_A + \boldsymbol{\alpha}_B \right) - \left(\psi_A - \psi_B \right) \end{split}$$

Measuring H_0 requires:

Ģ

- an arrival time difference $t_A t_B$ (observed)
- a distance between images $oldsymbol{x}_A oldsymbol{x}_B$ (observed)
- a distance-redshift relation D(z) (cosmology)
- local lens props at image positions (lensing)

break degeneracies in lensing and cosmology

Derivation of all exact lensing degeneracies (arXiv:1809.03505)

Formalism is degenerate in local lens properties \rightarrow degeneracies for each multiple image system

$$t_A - t_B = \frac{1 + z_{\rm d}}{c} \frac{D_{\rm l} D_{\rm s}}{D_{\rm ls}} \left(\phi_A - \phi_B\right)$$

Derivation of all exact lensing degeneracies (arXiv:1809.03505)

Formalism is degenerate in local lens properties \rightarrow degeneracies for each multiple image system

$$t_A - t_B = \frac{1 + z_{\rm d}}{c} \frac{D_{\rm l} D_{\rm s}}{D_{\rm ls}} \left(\phi_A - \phi_B \right)$$

Mathematical divergence theorems imply

• $\alpha(x) = \nabla \psi(x), \ y = x - \alpha(x)$ $\rightarrow \phi_A - \phi_B$ invariant, as long as

 $\delta\psi_A - \delta\psi_B = -\left(\boldsymbol{x}_A - \boldsymbol{x}_B\right)^{\top} \delta \boldsymbol{y}$

Derivation of all exact lensing degeneracies (arXiv:1809.03505)

Formalism is degenerate in local lens properties \rightarrow degeneracies for each multiple image system

$$t_A - t_B = \frac{1 + z_{\rm d}}{c} \frac{D_{\rm l} D_{\rm s}}{D_{\rm ls}} \left(\phi_A - \phi_B \right)$$

Mathematical divergence theorems imply

•
$$\boldsymbol{\alpha}(\boldsymbol{x}) = \nabla \psi(\boldsymbol{x}), \ \boldsymbol{y} = \boldsymbol{x} - \boldsymbol{\alpha}(\boldsymbol{x})$$

 $\rightarrow \phi_A - \phi_B$ invariant, as long as

 $\delta\psi_A - \delta\psi_B = -\left(\boldsymbol{x}_A - \boldsymbol{x}_B\right)^{\top} \delta\boldsymbol{y}$

•
$$\Delta \psi(\boldsymbol{x}) = 2\kappa(\boldsymbol{x})$$
 with $\forall \boldsymbol{x} \in \partial \mathcal{A} : \psi(\boldsymbol{x}) = 0$
 $\rightarrow \psi(\boldsymbol{x}) = \frac{1}{\pi} \int_{\mathcal{A}} d^2 \tilde{\boldsymbol{x}} \kappa(\tilde{\boldsymbol{x}}) \ln |\boldsymbol{x} - \tilde{\boldsymbol{x}}|$
 $\rightarrow \phi_A - \phi_B$ invariant, as long as

 $\delta \kappa(\pmb{x})$ is a null-set of the integral measure

Extension from the lens plane into cosmology (arXiv:1904.07239)

Measure integrated quantities along the line of sight

$$t_A - t_B = rac{1+z_{
m d}}{c} rac{D_{
m l} D_{
m s}}{D_{
m ls}} \Big(\phi_A - \phi_B \Big)$$

 underdetermination of splitting (freedom of gauge choice): metric + perturbers + lensing
 Invisible dark matter can be redistributed

Breaking degeneracies by mass density models

Critical curve reveals similar lens morphology for many lenses

• galaxy-scale lenses (elliptical) power-laws:

$$ho(m{r}) \propto \left(1 + rac{|m{r}|}{r_{
m s}}
ight)^{-lpha}$$
 (SIS, NIS, SIE, ...)

• cluster-scale lenses combined power-laws:

 $\rho(\boldsymbol{r}) \propto \left(\frac{|\boldsymbol{r}|}{r_{\rm s}}\right)^{-\alpha} \left(1 + \left(\frac{|\boldsymbol{r}|}{r_{\rm s}}\right)^{\beta}\right)^{-\gamma} \qquad \text{(NFW, PIEMD, ...)}$

Why combinations of power-law profiles?

Derivation of power-law density profiles (arXiv:2002.00960)

Self-gravitating ensemble of $n_{
m p}$ i.i.d. particles form continuous ho(r)

• "microscopic" probability for a particle at r_j :

 $p(r_j) = N \left(1 + \frac{r_j}{r_\sigma} \right)^{-\alpha}$

• "macroscopic" normalisation given by finite volume:

$$\int_{V_{\text{max}}} \mathrm{d}V p(r_j) \stackrel{!}{=} 1 \to N = N(\alpha, r_\sigma, r_{\text{max}})$$

Derivation of power-law density profiles (arXiv:2002.00960)

Self-gravitating ensemble of $n_{
m p}$ i.i.d. particles form continuous ho(r)

• "microscopic" probability for a particle at r_j :

 $p(r_j) = N \left(1 + \frac{r_j}{r_\sigma} \right)^{-\alpha}$

- "macroscopic" normalisation given by finite volume: $\int_{V_{\max}} \mathrm{d}V p(r_j) \stackrel{!}{=} 1 \to N = N(\alpha, r_{\sigma}, r_{\max})$
- \rightarrow most likely joint spatial distribution determines α

$$\frac{\partial_{\alpha} N(\alpha, r_{\sigma}, r_{\max})}{N(\alpha, r_{\sigma}, r_{\max})} - \frac{1}{n_{\mathrm{p}}} \sum_{j=1}^{n_{\mathrm{p}}} \ln\left(1 + \frac{r_{j}}{r_{\sigma}}\right) \stackrel{!}{=} 0$$

 \rightarrow treat particles as (inhom.) sampling of ho(r)

ightarrow most common ho(r) are special cases!

H_0 from galaxy-scale time-delay cosmography (TDCOSMO)

$$t_A - t_B = rac{1+z_{
m d}}{c} rac{D_{
m l} D_{
m s}}{D_{
m ls}} \Big(\phi_A - \phi_B \Big)$$

$$P(\mathcal{V}|\mathcal{O}) = P(\mathcal{O}|\mathcal{V}) P(\mathcal{V}|\mathcal{A}) P(\mathcal{A})$$

obs.: $\mathcal{O} = \{t_A - t_B, \sigma, ...\}$, param.: $\mathcal{V} = \{H_0, \Omega_m, \Omega_\Lambda, p_{\text{lm}}\}$, assumptions: \mathcal{A}

H_0 from galaxy-scale time-delay cosmography (TDCOSMO)

$$t_A - t_B = rac{1+z_{
m d}}{c} rac{D_{
m l} D_{
m s}}{D_{
m ls}} \Big(\phi_A - \phi_B \Big)$$

 $P(\mathcal{V}|\mathcal{O}) = P(\mathcal{O}|\mathcal{V}) P(\mathcal{V}|\mathcal{A}) P(\mathcal{A})$ obs.: $\mathcal{O} = \{t_A - t_B, \sigma, ...\}$, param.: $\mathcal{V} = \{H_0, \Omega_m, \Omega_\Lambda, p_{\rm lm}\}$, assumptions: \mathcal{A}

Still need to sample E(z) to get H_0 !

Observation-based E(z) from supernovae (arXiv:1812.04002)

Reconstruct E(z) from SNe Ia without any assumption on H_0

- Pantheon sample: 1048 SNe Ia out to z = 2.3
- given d = μ + M and the covariance matrix Σ_μ

•
$$D_{\rm L} = 10^{\frac{\mu}{5}+1} = 10^{\frac{d-M}{5}+1}$$
, $\Sigma_{\rm obs} = 10^{-\frac{2M}{5}} \tilde{\Sigma}_{\rm obs}(\Sigma_{\mu})$

assume scaling with M equivalent to scaling with H_0 $D_{\rm L} \equiv 10^{-\frac{M}{5}} \tilde{D}_{\rm obs} = \frac{c}{H_0} \tilde{D}_{\rm mod} = \frac{c}{H_0} (1+z) \int_0^z \frac{\mathrm{d}x}{E(x)}$

- Einstein-de-Sitter basis $\{\Phi_{\alpha}(z)\}_{\alpha}$: $\tilde{D}_{obs}(z,c) = \sum_{\alpha} c_{\alpha} \Phi_{\alpha}(z)$
- Starobinski-approach: $\tilde{D}_{obs} \stackrel{!}{=} \tilde{D}_{mod} \Rightarrow \tilde{E}(z)$
- normalisation $E(z=0) \stackrel{!}{=} 1 \Rightarrow E(z) = \frac{\tilde{E}(z)}{\tilde{E}(z=0)}$

E(z) without any assumption about H_0

Distance ratio from supernovae (arXiv:1812.04002)

• convert to
$$\tilde{D}_{\rm A}(z) = rac{1}{(1+z)} \int\limits_0^z rac{{\rm d}x}{E(x)}$$
 for $\tilde{D}_{\rm s}$, $\tilde{D}_{\rm l}$, $\tilde{D}_{\rm ls}$

• calculate
$$D \equiv \frac{D_{\rm l} D_{\rm s}}{\tilde{D}_{\rm ls}}$$

observation-based E(z) gains independence of cosmological parameters but costs precision

Summary: the best understood H_0 -value

- *H*⁰ from time delay differences
 - well-accessible observables: few TDD, luminous part of the lens
 → understanding of relevant astrophysical effects
 - simple lensing formalism: gravity is described by a linear potential theory → understanding of its degeneracies
 - simple lens description: morphology constrained by fundamental interactions → understanding of occurring lens shapes

BUT...

- percent-precision seems feasible?
 → is percent-precision reasonable?
- can this approach really solve the H₀-tension?

Thank you for your attention

I gratefully acknowledge

- inspiring discussions with my colleagues, collaborators, and friends
- the invitation to present my work here!

My idea to solve the H_0 -tension: arXiv:2203.11219

Further information: thegravitygrinch.blogspot.com

thegravitygrinch@gmail.com