Signatures of Primordial Non-Gaussianity in the non-linear density field

arXiv: 2206.01619, 2206.01624, 2206.15450, 2211.07565 & 2305.10597 In collaboration with the Quijote-PNG team (W. Coulton, F. Villaescusa-Navarro, D. Karagiannis, D. Jamieson, M. Liguori, M. Baldi, L. Verde & B. Wandelt)

Cosmology from Home 2023

Gabriel Jung Institut d'Astrophysique Spatiale **Université Paris-Saclay**

Primordial non-Gaussianity (PNG)

Probing the early universe physics

Primordial non-Gaussianity: tiny deviations from Gaussianity of **primordial fluctuations**

- \rightarrow Predicted in different shapes (e.g. local, equilateral, orthogonal) and amplitudes $f_{\rm NL}$ by different models of inflation
- Best current constraints from Planck CMB bispectrum measurements (1905.05697)

Upcoming LSS surveys (e.g. Euclid) should be able to improve these constraints

Growth of structure by gravitational instability is non-linear

- \blacksquare Very non-Gaussian matter distribution at low redshift \Rightarrow can we see the small PNG contributions?
- \blacksquare Theoretical predictions are difficult \Rightarrow what is the impact of PNG on small scales?

Solution: simulation-based approach

 $f_{\rm NL}^{\rm local} = -0.9 \pm 5.1, f_{\rm NL}^{\rm equil} = -26 \pm 47, f_{\rm NL}^{\rm ortho} = -38 \pm 24$

The Quijote-PNG simulations

https://quijote-simulations.readthedocs.io/en/latest/png.html Coulton, GJ, Villaescusa-Navarro, Karagiannis, Jamieson, Liguori, Baldi, Verde, Wandelt

Goal: produce enough N-body simulations to measure the impact of PNG on the distribution of matter

Quijote-PNG

Coulton, Villaescusa-Navarro, Jamieson, Baldi, GJ, Karagiannis, Liguori, Verde, Wandelt (2206.01619)

- N-body simulations fully compatible with Quijote having PNG in their initial conditions
- Sets of **500 simulations** with $f_{NL} = \pm 100$ (local, equilateral and orthogonal PNG)
- Codes: 2LPTPNG (<u>https://github.com/dsjamieson/2LPTPNG</u>) and Gadget-3

Quijote

Villaescusa-Navarro et al. (1909.05273)

15000 simulations for a fiducial Planck cosmology $\{\sigma_8 = 0.834, \Omega_m = 0.3175, \Omega_b = 0.049, h = 0.6711, n_s =$

Sets of **500 simulations** varying one cosmological parameter

Each simulation contains 512³ dark matter particles and has a size of 1 Gpc/h

https://quijote-simulations.readthedocs.io

$$= 0.9624, f_{\rm NL} = 0$$

Modal Bispectrum of Quijote-PNG simulations

Modal estimator

Fergusson, Liguori & Shellard (0912.3411, CMB) Schmittfull, Regan & Shellard (1207.5678, LSS) Hung, Fergusson & Shellard (1902.01830, LSS) Byun, Oddo, Porciani & Sefusatti (2010.09579, LSS)

Expansion of the data **bispectrum** on a basis of **separable functions**

$$\frac{B(k_{1}, k_{2}, k_{3})}{n} = \sum_{\substack{n \\ \text{with}}} \beta_{n} Q_{n}(k_{1}, k_{2}, k_{3})$$

 $Q_{n \equiv \{r,s,t\}}(k_1, k_2, k_3) = q_r(k_1)q_s(k_2)q_t(k_3) + \text{perms}$

Choice of modal basis

- Step functions \Rightarrow **binned** estimator Thousands of bin-triplets $\beta_{\Delta k_1 \Delta k_2 \Delta k_3}$
- **Polynomials** \Rightarrow efficient compression, only ~100 β_n to describe the full bispectrum of the Quijote simulations!

Information content on parameters

"Standard" Fisher matrix

- \blacksquare Parameters $\{\theta_a\}$: $\{\sigma_8, \Omega_m, \Omega_b, h, n_s\}$ **Observables** S: bispectrum, etc.
- Optimal error bars:

$$\sigma(\theta_a) \ge \sqrt{(F^{-1})_{aa}}$$

➡ Fisher information:

$$F_{ab} = \frac{\partial S_i}{\partial \theta_a} \mathbf{C}_{ij}^{-1} \frac{\partial S_j}{\partial \theta_b}$$

- Can be computed from simulations
- Inverse covariance of S (15000) simulations at fiducial cosmology)
- Derivatives (sets of 500 simulations) with a displaced parameter)
- → **Issue**: requires many simulations to avoid superoptimal constraints

Coulton & Wandelt (2305.08994)

Optimal data compression: MOPED, score function

Heavens, Jimenez & Lahav (astro-ph/9911102) Alsing & Wandelt (1712.00012)

 $\hat{\theta}_a = \hat{\theta}_a^* + (\mathbf{F}^{-1})_{ab}^* \tilde{S}_{\theta_b},$

"Compressed" Fisher matrix

$$\tilde{S}_{\theta} = \frac{\partial S_i}{\partial \theta} C_{ij}^{-1} (S_j - \bar{S}_j)$$

• **Optimal**: no loss of statistical information about θ (if S is Gaussian)

• **Compression**: from N observables to n (number of parameters) statistics

Compute the Fisher information of compressed statistics

 Noisy derivatives make the compression slightly suboptimal • Derivatives of compressed statistics converge with much fewer simulations

\Rightarrow Conservative Fisher error bars

"Combined" Fisher matrix: mean of standard and compressed Fisher

Quasi-maximum likelihood estimator

(*: evaluated at fiducial cosmology)

Results (matter density field)

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes $f_{\rm NL}$

Using ~25000 simulations (Quijote) at z = 1, up to $k_{max} = 0.5 h/Mpc$, volume: 1 (Gpc/h)³

(Quijote-PNG team)

Results (matter density field)

Joint Fisher analyses of Λ CDM cosmological parameters and PNG amplitudes $f_{\rm NL}$

Using ~25000 simulations (Quijote) at z = 1, up to $k_{max} = 0.5 h/Mpc$, volume: 1 (Gpc/h)³

(Quijote-PNG team)

2206.01619

Results (halo density field)

Biased tracers of the matter density field

- → Halos identified in Quijote simulations using Friends-of-Friends algorithm
- \blacksquare Only halos more massive than $M_{\rm min} = 3.2 \times 10^{13} M_{\odot}/h$ are considered
- \rightarrow Much lower number of halos than dark matter particles \Rightarrow large **shot noise**

2206.15450 2211.06565 (Quijote-PNG team)

Beyond the bispectrum

With the Halo Mass Function (HMF)

2305.10597 (GJ, Ravenni, Baldi, Coulton, Jamieson, Karagiannis, Liguori, Shao, Verde, Villaescusa-Navarro, Wandelt)

Impact of PNG on the HMF

Joint Fisher analysis HMF/Power Spectrum/Bispectrum

Summary of the talk

arXiv: 2206.01619, 2206.01624, 2206.15450, 2211.07565 & 2305.10597

Quijote-PNG simulations

https://quijote-simulations.readthedocs.io/en/latest/png.html

→ 4000 publicly available N-body simulations with PNG (local, equilateral and orthogonal)

Analyses of the non-linear matter and halo density fields

- \rightarrow Measurements of power spectra and bispectra up to $k_{\text{max}} = 0.5 \, h/\text{Mpc}$
- \rightarrow Fisher analyses highlighting the role of scales with k > 0.2 h/Mpc
- Several simulation-based Fisher methods to confirm the numerical stability of the results
- Quasi-maximum likelihood estimator of PNG parameters confirming Fisher forecasts
- Beyond the bispectrum: example of the halo mass function

Thanks!

