‡Fermilab

All the X in one basket: X-ray constraints on sub-GeV dark matter Elena Pinetti

Cosmology from Home 2023

This talk is based on...

INTEGRAL X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*}, Bradley J. Kavanagh^{*c*}, Elena Pinetti^{*a,b*}

^a Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & UPMC, 4 Place Jussieu, F-75252, Paris, France

^b Dipartimento di Fisica, Università di Torino & INFN, Sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy

> ^c Instituto de Física de Cantabria, (IFCA, UC-CSIC), Av. de Los Castros s/n, 39005 Santander, Spain

Putting all the X in one basket: Updated X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*},

Jordan Koechler^a, Elena Pinetti^{c,d}, Brandon Roach^e

Phys.Rev.D 103 (2021) 6, 063022

arXiv:2303.08854v1, submitted to JCAP

This talk is based on...

INTEGRAL X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*}, Bradley J. Kavanagh^{*c*}, Elena Pinetti^{*a,b*}

^a Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & UPMC, 4 Place Jussieu, F-75252, Paris, France

^b Dipartimento di Fisica, Università di Torino & via P. Giuria 1, I-10125 Tor

> ^c Instituto de Física de Cantab Av. de Los Castros s/n, 390

$$1 \text{ MeV} \leq m_{\chi} \leq 5 \text{ GeV}$$

Phys.Rev.D 103 (2021) 6, 063022

Putting all the X in one basket: Updated X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*},

Koechler^a, Elena Pinetti^{c,d}, Brandon Roach^e

arXiv:2303.08854v1, submitted to JCAP

Indirect detection of sub-GeV dark matter

MeV gap

Figure adapted from Tatischeff+ arxiv:1805.06435

MeV gap

Figure adapted from Tatischeff+ arxiv:1805.06435

Production channels

 $1 \text{ MeV} < m_{\chi} < 5 \text{ GeV}$

3 decay/annihilation channels:

 $\chi(\chi) \longrightarrow e^+e^ \chi(\chi) \longrightarrow \mu^+\mu^ \chi(\chi) \longrightarrow \pi^+\pi^-$

Kinematically open:

 $m_{\chi} > (2)m_i \ i = e, \mu, \pi$

Total Flux

 $\phi_{TOT} = \phi_{FSR} + \phi_{Rad} + \phi_{ICS}$

$$\chi \chi \longrightarrow \mu^{+} \mu^{-} \gamma \qquad \text{FSR}$$
$$\chi \chi \longrightarrow \mu^{+} \mu^{-} \qquad \text{Rad}$$
$$\downarrow \qquad e^{+} \nu_{e} \overline{\nu}_{\mu} \gamma$$

Inverse Compton Scattering

$$\chi \chi \longrightarrow (...) \rightarrow e^+ e^-$$

 $e^- + \gamma \rightarrow e^- + \gamma$

Prompt components

Decaying dark matter:

$$\frac{d\phi}{dE_{\gamma} d\Omega} (E_{\gamma}, \theta) = \frac{1}{4\pi} \frac{1}{\tau m_{\text{DM}}} \frac{dN}{dE_{\gamma}} (E_{\gamma}) D(\theta) \qquad D(\theta) = \int_{l.o.s} \rho(s(r, \theta)) ds$$
Particle Energy D-factor properties spectrum
Annihilating dark matter:
$$\frac{d\phi}{dE_{\gamma} d\Omega} (E_{\gamma}, \theta) = \frac{1}{4\pi} \frac{\langle \sigma_{ann} v \rangle}{2m_{DM}^2} \frac{dN}{dE_{\gamma}} J(\theta) \qquad J(\theta) = \int_{l.o.s} \rho^2(s(r, \theta)) ds$$

Inverse Compton scattering

 $\chi\chi \longrightarrow (...) \rightarrow e^+ e^-$

3 kind of photons:

- CMB
- IR (dust)
- Optical (starlight)

Inverse Compton scattering

 $\gamma = \frac{E_e}{m_e}$ $E_{\gamma} \approx 4\gamma^2 E_0$

Inverse Compton scattering

$$\frac{d\phi_{IC}}{dE_{\gamma}d\Omega} = \frac{1}{4\pi E_{\gamma}} \int_{l.o.s.} ds \, j\left(E_{\gamma}, \vec{x}(s, b, l)\right)$$

$$j(E_{\gamma}, \vec{x}) = 2 \int_{m_e}^{m_{\chi}} dE_e P_{IC}(E_{\gamma}, E_e, \vec{x}) \frac{dn_e}{dE_e}(E_e, \vec{x})$$

$$e^{\pm} \qquad \text{Differential} \qquad \text{Number}$$

$$e^{\text{power}} \qquad \text{density}$$

Emissivity

ICS Power

Electron number density

Energy losses $b_{tot}(E_e, \vec{x})$

Energy loss coefficient b [GeV/sec]

Total flux

INTEGRAL

XMM-Newton

Energy range

Observations

Constraints on electron channel

Comparison with the literature

Diffusive gamma-ray constraints

Voyager constraints

Boudaud et al., Phys. Rev. Lett. 119 (2017) 021103

CMB constraints

Slatyer, Phys. Rev. D 93 (2016) 023527 Lopez-Honorez et al., JCAP 07 (2013) 046 Diamanti et al., JCAP 02 (2014) 017 Liu et al., arXiv:2008.01084 23

Leo T constraints

Wadekar and Wang, Phys. Rev. D 106 (2022) 7, 075007

Final state radiation with INTEGRAL

Calore+, Mon. Not. Roy. Astron. Soc. 520 (2023) 4167–4172 25

Comparison with bounds

An eye toward the future

Sensitivity compared to XMM-Newton

Better angular resolution but smaller field of view

Energy range: 0.1 keV-10 keV

eROSITA

Primary instrument on-board SRG X-ray band up to 10keV Developed by Max Planck Institute for Extra-terrestrial Physics (MPE)

ART-XC

Secondary instrument on-board SRG X-ray band up to 30keV Developed by Russian Space Research Institute (IKI)

All-sky survey

Energy range: 0.2 keV-10 keV

2nd data release in May 2023

Beyond the Milky Way

Conclusions

X-ray telescopes can help in closing the MeV gap

2

3)

Inverse-Compton scattering on the photon bath is a powerful tool to study sub-GeV dark matter

Strongest bounds on

• Annihilating DM (if p-wave): $m_{DM} \ge 20 \text{ MeV}$

 $m_{DM} \ge 100 \text{ MeV}$

Decaying DM:

Vov 10^{-26} ov [cm³/s] 10^{-27} 10^{-28} MB 5-Wave 10^{-29} 10-30 10^{1} 10² 10³ 1028 1027 Voyager Leo T 1026 S Diffuse γ -rays ► 10²⁵ 1024 FSR CMB 1023 100 10¹ 10² 10³ m_{DM} [MeV]

 10^{-24}

 10^{-25}

Conclusions

Thank you for your attention!

X-ray telescopes can help in closing the MeV gap

2

3

Inverse-Compton scattering on the photon bath is a powerful tool to study sub-GeV dark matter

Strongest bounds on

- Annihilating DM (if p-wave): $m_{DM} \ge 20 \text{ MeV}$
- Decaying DM:

 $m_{DM} \ge 100 \; {
m MeV}$

