

Bootstrapping Multi-Field Inflation:

non-Gaussianities from light scalars revisited

with Guilherme Pimentel, Ana Achucarro arXiv: 2212.14035

Dong-Gang Wang (王东刚)

DAMTP Cambridge

Cosmology From Home 2023

If we enter a data-oriented conference on non-Gaussianity...

$$f_{\mathrm{NL}} \qquad f_{\mathrm{NL}} \qquad f_{\mathrm$$

Tracing local non-Gaussianity in CMB

Latest CMB constraint from Planck satellite:

$$f_{\rm NL}^{\rm local} = -0.9 \pm 5.1$$

Huge improvements are under way!

Bootstrapping Multi-Field Inflation

DGW, Pimentel, Achucarro 2022

The true "local" shape from multi-field inflation

What was missed in previous computations?

Classification of multi-field non-Gaussianities

New shapes!

Plan of the Talk

Bootstrap Recap in 2 mins:

basic ideas & the pheno frontier

> IR Divergences in Cosmological Bootstrap

anomalous Conformal Ward Identities

Classification of multi-field non-Gaussianities

true form of the local shape & new pheno

Summary & Outlook

The traditional approaches towards cosmological correlators

(the in-in formalism, δN formalism, transport method, etc)

Cosmological Bootstrap:

Correlators from Symmetries, Locality & Unitarity

See talk videos on *CfH 21* by G. Pimentel; and on *CfH 22* by H. Goodhew, G. Lee, S. Renaux-Petel&S. Jazayeri, A. Thavanesen, and DGW

Classification of Primordial Non-Gaussianities

single field inflation

contact

cosmological collider

massive exchange

multi-field inflation

additional light scalars

Assuming:

- 1) (nearly) scale-invariance; 2) weakly coupled (tree-level LO).

Primordial bispectrum: the Fourier transf. of the 3-point correlation function

$$\langle \zeta_{\bf k_1}\zeta_{\bf k_2}\zeta_{\bf k_3}\rangle \sim f_{\rm NL}S(k_1,k_2,k_3)P_\zeta^2$$
 How easy/hard size to be detected shape

Pheno Frontier of the Bootstrap Program

Contact

Massive Exchange

Massless Exchange

Equilateral non-Gaussianity

Single Field Inflation

Boostless Bootstrap

Pajer, Stefanyszyn, Supeł 2020; Pajer 2020 Jazayeri, Pajer, Stefanyszyn 2021 Bonifacio, Pajer, DGW 2021;

captures models such as P(X), DBI inflation with small sound speed

- boost-breaking => large signals
- a complete menu of scalar bispectra from single field inflation

Pheno Frontier of the Bootstrap Program

Massive Exchange

Massless Exchange

Cosmological Colliders

Boostless Cosmological Collider Bootstrap

Pimentel, DGW 2022

- full analytical shapes of cosmo collider bispectra for *any* mass, spin, interactions
- **Margine Methons of the Method in the Experimental Collider Shape**

[See more in my last years' talk on CfH 22 and also the talk by Renaux-Petel&Jazayeri]

Pheno Frontier of the Bootstrap Program

Single Field Inflation

Contact

Cosmological Collider

Massive Exchange

Multi-Field Inflation

Massless Exchange

Traditional approach:

separate universe approximation

 $(\delta N \text{ formalism})$

Lyth, Seery, Wands, Sasaki, Komatsu,... 2003/2004

Is this computation complete?

When we talk about multi-field inflation...

- Too many possibilities explored in the past 30 years;
- Normally model dependent;
- Lacking a unifying theme...:(

Multi-Field Conversion = IR Divergences

$$\mathcal{L}^{\text{int}} = -\lambda \dot{\phi} \sigma - g(\partial_{\mu} \phi)^{2} \sigma$$

Conversion from Interactions

adiabatic modes:

 ϕ

the inflaton fluctuations

isocurvature modes:

 σ

the additional light scalars $m \ll H$

Superhorizon Conversion

 $\dot{\zeta} \propto \lambda \sigma$

super-horizon growth of ζ by the multi-field conversion

$$\zeta \propto Ht$$

IR singular behaviour $\mathcal{K} \propto \log(k\eta_0)$

IR Divergences in Cosmological Bootstrap

Three-Point Scalar Seed

 $\langle \varphi_{k_1} \varphi_{k_2} \phi_{k_3} \rangle \sim$

$$\sim \hat{\mathcal{I}}(u, \eta_0)$$

$$u \equiv \frac{k_3}{k_1 + k_2}$$

 σ is massive

IR-finite correlator

Arkani-Hamed, Baumann, Lee, Pimentel 2018 Pimentel, DGW 2022

Conformal Ward Identities

$$\left(\Delta_u - 2 + \frac{m^2}{H^2}\right)\hat{\mathcal{I}} = \frac{u}{1+u} \quad \text{with } \Delta_u \equiv u^2(1-u^2)\partial_u^2 - 2u^3\partial_u$$

with
$$\Delta_u \equiv u^2(1-u^2)\partial_u^2 - 2u^3\partial_u$$

 $\triangleright \sigma$ is massless

IR-divergent correlator

DGW, Pimentel, Achucarro 2022

Anomalous Conformal Ward Identities

$$(\Delta_u - 2)\hat{\mathcal{I}}(u, \eta_0) = \frac{u}{1+u} + \frac{6}{u}\hat{\mathcal{K}}(k\eta_0)$$

an extra source term caused by the IR cutoff

The true "local" shape from dS bootstrap

Here is the full shape:

logarithmic kt-pole:

from the cubic vertex

massless exchange:

the minimal setup for multi-field inflation

$$S(k_1, k_2, k_3) \propto \frac{1}{k_1^3 k_2^3 k_3^3} \Big[\left(\gamma_E - 3 - \log(-k_t \eta_0) \right) (k_1^3 + k_2^3 + k_3^3) + k_t e_2 - 4e_3 \\ + (k_2^3 + k_3^3) \log(-2k_1 \eta_0) + (k_1^3 + k_3^3) \log(-2k_2 \eta_0) + (k_1^3 + k_2^3) \log(-2k_3 \eta_0) \Big]$$

$$S^{\text{local}} = \frac{k_1^3 + k_2^3 + k_3^3}{k_1^3 k_2^3 k_3^3}$$

logarithmic k_n -pole: from the linear mixing

$$k_t \equiv k_1 + k_2 + k_3$$
 $e_2 = k_1k_2 + k_1k_3 + k_2k_3$ and $e_3 = k_1k_2k_3$

What was missed in the δN / transport approach?

comoving slice at t₀

$$N(t_*,\mathbf{x})=N(\Phi^a)$$

previous

A local patch of the Universe during inflation

Curvature Perturbation as the differences in the local efolds

$$\zeta(\mathbf{x}) = N(\Phi_0^a + \phi^a) - N(\Phi_0^a)$$

$$= N_a \phi^a + \frac{1}{2} N_{ab} \phi^a \phi^b + \frac{1}{6} N_{abc} \phi^a \phi^b \phi^c + \dots$$

initial flat slice at t*

$$\Phi^a(t_*,\mathbf{x}) = \Phi^a_0(t_*) + \phi^a(t_*,\mathbf{x})$$

Initial field fluctuations are defined at t* right after horizon exit

Are they just free scalars? Actually not in multi-field inflation!

As an example, even before horizon-exit,

the $\dot{\phi}\sigma$ interaction already deformed the Bunch-Davies mode function

for
$$-k\eta > 1$$
, $\mathcal{K} \to \eta e^{ik\eta} \log(-k\eta)$

one concrete example for comparison: Achucarro, Copeland, larygina, Palma, DGW, Welling 2019

IR divergence => local-type non-Gaussianity

massless exchange with arbitrary interactions:

New Pheno: Multi-Speed Non-Gaussianity

Linear mixing with **higher derivatives** $\ddot{\phi}\sigma$, $\dot{\phi}\partial_i^2\sigma$, etc. IR-finite correlators

Bootstrap our way towards inflationary new physics

Contact

self-interaction of the inflaton

Boostless Bootstrap

all the possible equilateral-type non-Gaussianity from single field inflation

Massive Exchange

intermediate massive particles

Boostless Cosmological Collider Bootstrap

- a complete set of cosmo collider bispectra with full analytic shapes
- new pheno: the equilateral collider shape

Massless Exchange

additional light scalars

multi-field Bootstrap

- the full "local" shapes from multi-field inflation and more
- mew pheno: the multispeed non-Gaussianity

Exciting Progresses. Stay tuned!