Ultraviolet Unitarity Violations In Nonminimally Coupled Scalar-Starobinsky Inflation

This presentation outlines briefly the work leading up to the paper JCAP01(2023)029 or arXiv:2205.12836

Cosmology from Home 2023

prepared for

NAIVE PREDICTIONS AND THEIR FALLACY

- Consider the Lagrangian: $\mathcal{L} = \frac{1}{2}q$
- From this, we can estimate that the breakdown of the theory on grounds of unitarity happens as $E \rightarrow \Lambda$.
- is insufficient to represent the physics of this process as $E \to \Lambda$.

$$\phi \Box \phi + \frac{1}{\Lambda} \phi^2 \Box \phi$$

• The corresponding amplitude in the s-channel: $\mathcal{M}(\phi\phi \rightarrow \phi\phi) = \sim \frac{p^2}{\Lambda} \frac{1}{p^2} \frac{p^2}{\Lambda} \sim \frac{s}{\Lambda^2}$

This does not mean that the theory is not unitary, just that this diagram

Images and arguments taken from 'Quantum Field Theory and the Standard Model' by Matthew Schwartz

- scalar for Higgs' inflation: $S = \int d^4x \sqrt{-g}$
- Going to the Einstein frame by taking the V
- Weyl transf. brings rescaling factors to denominator of matter terms and requires perturbative expansion and canonicalization.
- Scalars around a background $(\Phi = \overline{\phi} + \phi)$. Expansion hinges on how large or small $\overline{\phi}$ is • compared to M_P and ϕ .
- Estimated unitarity violation close to $M_P/\sqrt{\xi}$ (Palatini formalism) for EW vacuum ($\bar{\phi} \to 0$).

HIGGS' INFLATION

Now, consider a perturbative approach involving $H = \frac{1}{\sqrt{2}}(\Phi_1 + i\Phi_2)$ as the Higgs' singlet

$$\left[\left(1 + \frac{2\xi |H|^2}{M_{Pl}^2}\right) \frac{M_{Pl}^2 R}{2} - \partial_\mu H^\dagger \partial^\mu H - V(|H|) \right]$$

Neyl transformation:
$$g_{\mu\nu} \rightarrow \left(1 + \frac{2\xi |H|^2}{M_P^2}\right) g_{\mu\nu}$$

3

LARGE BACKGROUND, SMALL BACKGROUND

- The two regimes correspond to the two epochs in the cosmological paradigm.
- Inflation $\implies \overline{\phi}$ is large.
- Reheating \implies EW vacuum $\implies \bar{\phi} \sim 0$.
- Taylor expansion of $(1 + x)^n$ depends on whether $x \gg 1$ or $x \ll 1$, and results are different unless we sum over all the terms without truncating the series.

McDONALD'S PROPOSAL (Palatini Only) arXiv:2007.04111 [hep-ph]

- Claimed that within the interaction volume: $\langle \phi \rangle \sim E$.
- limit $\phi \to 0$.
- give us the whole picture; better than the 'naive predictions'.
- recovered by looking at how fields transform between the frames.

• Such estimations are only applicable in specific regimes and <u>cannot</u> be extrapolated.

• Suggested working around $\phi \ll E$; did not spoil predictions as we can safely take the

• He also assumed that working in the $\phi \gg E$ limit and later matching the two could

Also, proposed that predictions in the Jordan frame would be more accurate; could be

ANTONIADIS ET AL.'S CORRECTION arXiv:2203.10040 [hep-ph]

- McDonald's proposals.
- matching.

$$\bar{G} = 1 + \frac{\xi \bar{\phi}^2}{M_P^2},$$

regimes, at least at the level of perturbative expansion.

• The paper is actually an addendum to arXiv:2106.09390 [hep-th] which called out

Holds the key to circumventing one McDonald's problematic assumptions regarding

• The authors essentially sum the infinite terms in the Taylor series using form factors:

$$x^2 = \frac{\xi \bar{\phi}^2}{M_P^2 \bar{G}}.$$

Avoid any discrepancy between the large background and the small background

SCALAR-STAROBINSKY COUPLING

$$S = \int d^4x \sqrt{g} \left[\frac{M_P^2}{2} \left(1 + \frac{\xi |\Phi|^2}{M_P^2} \right) \left(R + \frac{\alpha}{2M_P^2} R^2 \right) - |\partial \Phi|^2 \right]$$

- $\Phi^2 R^2$ coupling inspired by background behaviour in arXiv:1705.07945 and as one-loop correction in arXiv:2007.10395.
- Unitarity analysis performed for all limits of ξ and α . Later, matched with physical
- model, α was small & negative, while no constraints were directly put on ξ .
- constraints on α .

inflation models using observational constraints on parameters from different potentials.

Example: arXiv:1705.07945 found that for safe exit from the inflationary epoch, for their

Similarly, a Higgs'-like inflation model found in arXiv:1701.03814 imposes $\xi \gg 1$ with no

METRIC FORMULATION RESULTS

			Unitarity up to M_P	$ \alpha \rightarrow 0$ limit
$ \alpha \ll 1$	Large Background	$b^2 \rightarrow 1$	Safe	Unsafe
		$b^2 \rightarrow 1/2$	Safe	Unsafe
		$b^2 \rightarrow 0$	Safe if $\frac{\alpha^2 \xi \phi_1^2}{M_P^2} \le 1$	Safe
	Small Background	$\xi \gg 1$	Unsafe	Unsafe
		$0 < \xi < 1$	Safe	Safe
$ \alpha \rightarrow 1$	Large Background	$b^2 \rightarrow 1, 1/2$	NA	
		$b^2 \rightarrow 0$	Unsafe	
	Small Background	$\xi \gg 1$	Safe	
		$0 < \xi < 1$	Safe	
$ lpha \gg 1$	Large Background	$b^2 \rightarrow 1$	NA	
		$b^2 \rightarrow 1/2$	Unsafe	
		$b^2 \rightarrow 0$	Unsafe	
	Small Background	$\xi \gg 1$	NA	$6\varepsilon x^2$
		$0 < \xi < 1$	Unsafe] where $b^2 = \frac{65x}{1+6\xi x^2}$

PALATINI FORMULATION RESULTS

	Unitarity up to M_P	$ \alpha \rightarrow 0$ limit
≥ 1	Safe	Safe
$\xi < 1$	Safe	Safe
≥ 1	Unsafe	Safe
$\xi < 1$	Safe	Safe
≥ 1	Safe	
$\xi < 1$	Safe	
≥ 1	Unsafe	
$\xi < 1$	Safe	
≥ 1	Safe if $ \alpha \leq \xi$	
$\xi < 1$	Safe if $\frac{ \alpha M_P^2}{\xi \bar{\phi}_1^2} \leq 1$	
≥ 1	Unsafe	
$\xi < 1$	Unsafe	

CONCLUSIONS

- For the inflation scenario in arXiv:1705.07945, in the metric formulation, unitarity is preserved in inflation and reheating epochs for $0 < \xi < 1$. $\xi \rightarrow \frac{1}{6}$ is lucrative, but considering the safety of $\alpha \rightarrow 1$, the viable range is $\xi \ll 1$. In the Palatini formulation, the safe limit is again $0 < \xi < 1$.
- For a Higgs'-like inflation, we were unable to find any viable ranges based on the present analysis. This was primarily due to computational constraints for $|\alpha| \ge 1$.
- McDonald's assumption about the continuity of the scattering amplitude when working around a small or large background doesn't hold (also proved by Antoniadis et al. in arXiv:2106.09390 [hep-th]).

