# Primordial gravitational waves from phase transitions during (quintessential) inflation

#### Andreas Mantziris

in collaboration with M. Kierkla, G. Laverda, M. Lewicki, M. Piani, J. Rubio, and M. Zych Institute of Theoretical Physics, University of Warsaw

Cosmology from Home 2023

3 -14 July 2023

Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023 1 / 10

# Quintessential inflation: runaway potential

The *cosmon* field  $\phi$  drives the accelerated expansion in the early and late universe: primordial inflation + quintessence (Dark Energy).





Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023 2 / 10

### Quintessential inflation: EoS

The energy density  $\rho = \frac{1}{2}\dot{\phi}^2 + V$  and pressure  $p = \frac{1}{2}\dot{\phi}^2 - V$  of the scalar field are related via the equation-of-state parameter  $w \equiv \frac{p}{\rho}$ .





Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023 3 / 10

# Evolution from inflation to kination

The Ricci scalar generically switches sign at the end of inflation

 $\mathcal{R} = 3(1 - 3w)H^2$ 



Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023

Spectator scalar  $\chi$  non-minimally coupled to gravity

$$S = \int d^4x \sqrt{-g} \left[ \frac{M_P^2 - \xi \chi^2}{2} \mathcal{R} - \frac{1}{2} (\partial \chi)^2 - V(\chi) + \mathcal{L}(\phi) \right]$$

• If  $\chi =$  higgs, all couplings are fixed, but complicated to solve and possibly weak PT.

• Instead, let  $\chi = BSM$  scalar singlet extension and choose couplings in parameter space for a strong phase transition (PT).

PT after inflation, because the barrier of the renormalizable potential

$$V = \frac{m^2}{2}\chi^2 + \frac{\sigma}{3}\chi^3 + \frac{\lambda}{4}\chi^4$$

is suppressed as  $(m^2 + \xi \mathcal{R})\chi^2$  decreases due to  $\mathcal{R}(t)$ .

Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023

## Evolution of barrier for sample values of the couplings



Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023

6/10

Barrier decreases  $\rightarrow$  PT  $\rightarrow$  bubble collisions  $\rightarrow$  GWs

• Bubble nucleation rate 
$$\Gamma = R_0^{-4} \left( rac{S_E}{2\pi} 
ight)^2 e^{-S_E}$$
, where

$$S_E(\delta) = \frac{4\pi^2}{3\lambda} (2-\delta)^{-3} \left[ \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 \right]$$

is the Euclidean action for O(4)-symmetric bounce solution, with  $\alpha_1 = 13.832$ ,  $\alpha_2 = -10.819$ ,  $\alpha_3 = 2.0765$ .

- The parameter  $\delta(t) = \frac{9\lambda(m^2 + \xi \mathcal{R}(t))}{\sigma^2}$  varies between 2 (degenerate minima) and 0 (vanishing barrier) and the critical thin-wall bubble radius is  $R_0 = \left(\frac{2S_E}{\pi^2 \Delta V}\right)^{\frac{1}{4}}$ , where  $\Delta V = V(\chi_{\rm fv}) V(\chi_{\rm tv}) \propto \sigma^4/\lambda^3$ .
- Nucleation condition  $\Gamma(t_n) = H^4(t_n) \xrightarrow{t_n \approx t_*} R_* = -5/\dot{S}_E(t_*).$

GW spectra: peak frequency and GW signal today

For 
$$\tilde{w} = \frac{\int_{t_*}^{t_{\mathrm{rad}}} w(t)dt}{t_{\mathrm{rad}} - t_*}$$
,  $S(f) = 25.09 \left[ 2.41 \left( \frac{f}{f_{\mathrm{peak},0}} \right)^{-0.56} + 2.34 \left( \frac{f}{f_{\mathrm{peak},0}} \right)^{0.57} \right]^{-4.2}$ ,

$$\begin{split} f_{\rm peak,0} &= 1.65 \times 10^{-5} \ {\rm Hz} \ \left(\frac{T_{\rm reh}}{100 \ {\rm GeV}}\right) \left(\frac{0.65}{R_* H_*}\right) \left(\frac{H_*}{H_{\rm reh}}\right)^{\frac{3w+1}{3\bar{w}+3}},\\ \Omega_{\rm GW,0}(f) &= \frac{1.67 \times 10^{-5}}{h^2} \left(\frac{H_{\rm reh}}{H_*}\right)^{2\frac{3\bar{w}-1}{3\bar{w}+3}} \left(5R_* H_*\right)^2 S(f) \,. \end{split}$$

The signal is boosted to the observable region as  $R_*$  increases, but successful bubble nucleation demands

$$\sigma \lesssim 10\pi H_{\inf}\sqrt{\xi} \quad \text{and} \quad \lambda^3(\sigma) \lesssim \frac{\xi^2 \sigma^2}{8 \times 10^{-35}} e^{-8 \times 10^2 \left(\frac{H_{\inf}}{\sigma}\right)^2}.$$
And reas Mantziris (IFT UW) GWs from PTs in guintessential inflation 3 -14 July 2023 8/

quintessentia

# Preliminary results of $\Omega_{ m GW,0}$ vs f with $H_{st}=10^{12}$ GeV



Andreas Mantziris (IFT UW)

GWs from PTs in quintessential inflation

3 -14 July 2023

## Overview and objectives

• Proof-of-concept study of generating GW signals from Ricci induced PT due to decreasing  $(m^2 + \xi \mathcal{R})$ -term after inflation.

• Identified parameter space of BSM scalar couplings for strong FOPT.

• Preliminary GW spectra beyond detector sensitivities and seemingly  $H_{\rm inf}$ -independent, but we need to incorporate reheating more carefully.

• Investigate Gauss-Bonnet coupling to curvature  $\frac{\xi G \chi^2}{2}$ , where  $G^2 = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} = -12(1+3w)H^4$ , to reach more favourable values of  $H_*$ ,  $H_{\rm reh}$ .

Andreas Mantziris (IFT UW) GWs from PTs in quintessential inflation 3 -14 July 2023 10 / 10