# Cosmological gravitational wave background anisotropies

PRD 107 (2023), "New universal property of cosmological GW anisotropies" with E. Dimastrogiovanni, G. Domènech, M. Fasiello and G. Tasinato

### Ameek Malhotra UNSW Sydney



Direct observation with gravitational waves

**Observation with light** 

NASA/WMAP Science Team





- SGWB overview
- SGWB anisotropies
  - Line of sight formalism
  - Adiabatic initial conditions
  - Isocurvature initial conditions
- Summary



- Stochastic signals appear similar to noise
- Superposition of signals too weak to be resolved individually e.g. compact object mergers
- Nature of generation process e.g. primordial sources inflation, PT...



[Images: A. Stuver/LIGO]



- SGWB characterised in terms of their statistical properties
  - 2-point (intensity/energy density) + higher order correlations
  - Spectral shape
  - Polarisation (circular/linear)
  - Anisotropies

# SGWB Landscape



# **SGWB** Anisotropies

### **GW** Production



Primordial source properties imprinted on anisotropies (Inflation, PT, PBH...)



Propagation through large scale density perturbations

 $t \approx 0$ 

See review by LISA CosWG (2022)

### **GW** Propagation

### Detection



### Characterising SGWB, parameter inference + model constraints





# SGWB line-of-sight formalism

perturbations



Described by distribution function  $f(\eta, \vec{x}, q^{\mu})$  with q = comoving momentum,  $\eta = \text{conformal time}$ 

[Alba & Maldacena 2015, Contaldi 2017; Bartolo et al. 2019a, 2019b]

### GW propagating along null geodesics of background spacetime with large scale

 $\kappa_L$ 



# SGWB line-of-sight formalism

Zeroth order term + perturbation

$$f(\eta, \vec{q}, \vec{x}) \equiv \bar{f}(\eta, q) - \Gamma(\eta, \vec{x}, q, \hat{n}) \frac{d \bar{f}}{d \ln q}$$

The isotropic and anisotropic parts of the energy density are

$$\bar{\Omega}_{\rm GW} = \frac{4\pi}{\rho_{\rm cr}} \left(\frac{q}{a_0}\right)^4 \bar{f}(\eta, q) ,$$

[Alba & Maldacena 2015, Contaldi 2017; Bartolo et al. 2019a, 2019b]

$$\delta_{\rm GW} = \left[ 4 - \frac{\partial \ln \bar{\Omega}_{\rm GW}(q)}{\partial \ln q} \right] \Gamma(\eta, \vec{x}, q, \hat{n})$$

# SGWB line-of-sight formalism

Solution in terms of Newtonian gauge potentials

$$\underbrace{\Gamma(\eta_0, k, f, \hat{n})}_{\text{``}\Delta T/T" \text{ for GW}} = \Gamma_I + \Phi_I + \int_{\eta_i}^{\eta_0} d\eta \left\{ \Phi'(k, \eta) + \Psi'(k, \eta) \right\} e^{-i\hat{k}\cdot\hat{n}(\eta_0 - \eta)}$$

 $\Gamma_I \equiv \Gamma(\eta_i, k, f, \hat{n}) \rightarrow \text{initial perturbation}$  $\Phi_I \equiv \Phi(k, \eta_i) \to SW$  $\Phi'(k,\eta) + \Psi'(k,\eta) \rightarrow$  ISW

[Alba & Maldacena 2015, Contaldi 2017; Bartolo et al. 2019a, 2019b]



# Adiabatic initial conditions - non standard w

- Equation of state of universe before BBN unknown - possible kination, eMD...
- SGWB spectral shape can tell us the expansion history
- However, possible degeneracies with other production mechanisms
- Can anisotropies help?





### **Adiabatic initial conditions**

For adiabatic initial conditions

What is the effect on the anisotropies?



### SGWB produced/horizon re-entry during an epoch with equation of state w

$$\Gamma_I = \frac{2\zeta}{5+3w}, \quad \Phi_I = -\frac{3(1+w)}{(5+3w)}\zeta$$

# Adiabatic initial conditions

- No effect on anisotropies from nonstandard w
- Adiabaticity  $\Longrightarrow \zeta$  conserved on superhorizon scales

$$C_{\ell}^{\Gamma} \propto \left[ -\frac{1}{3} \zeta j_{\ell}(k\eta_0) + \text{ISW} 
ight]$$



 $\mathbf{2}$ 

# Isocurvature via curvaton mechanism

- Additional scalar field besides the inflaton, subdominant during inflation [Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi (2002)]
- Post-inflation, it behaves like dust and may dominate the energy density of the universe
- Resulting isocurvature depends on the decay products of the curvaton

L

# **Curvaton scenario**

- Curvaton dominates  $\rho_{\rm tot}$  then decays entirely into radiation
- Fluctuation amplitude fixed by CMB normalisation

$$C_{\ell}^{\Gamma} \propto \left[ -\frac{4}{3} \zeta_r \, j_{\ell} [k\eta_0] + \text{ISW} \right]^2$$



### 4x adiabatic term

# **Curvaton scenario II**

- Curvaton remains subdominant and decays entirely into GW
- Fluctuation amplitude not fixed

$$C_{\ell}^{\Gamma} \propto \left\{ \left[ \begin{array}{c} \frac{(1+w_{\chi})}{(1+w_{r})} \zeta_{\chi} & -\frac{1}{3} \end{array} \right] \right\}$$

independent curvaton fluctuations



$$\left\{ \int_{r} j_{\ell} [k\eta_0] + \text{ISW} \right\}^2$$

### **Curvaton summary plot**



![](_page_15_Picture_2.jpeg)

![](_page_16_Picture_0.jpeg)

- Anisotropies a key property for characterising SGWB
- Adiabatic anisotropies independent of primordial equation of state
- mechanism

### Distinct predictions for isocurvature anisotropies based on curvaton

![](_page_17_Picture_2.jpeg)

Contact: <u>ameek.malhotra@unsw.edu.au</u> or through Slack